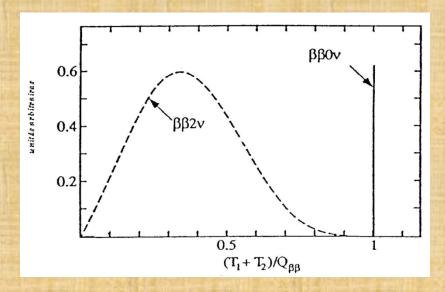
Supported by Grant-in-Aid for Scientific Research (C) 24540295 and Grant-in-Aid for Scientific Research on Innovative Areas 24104501

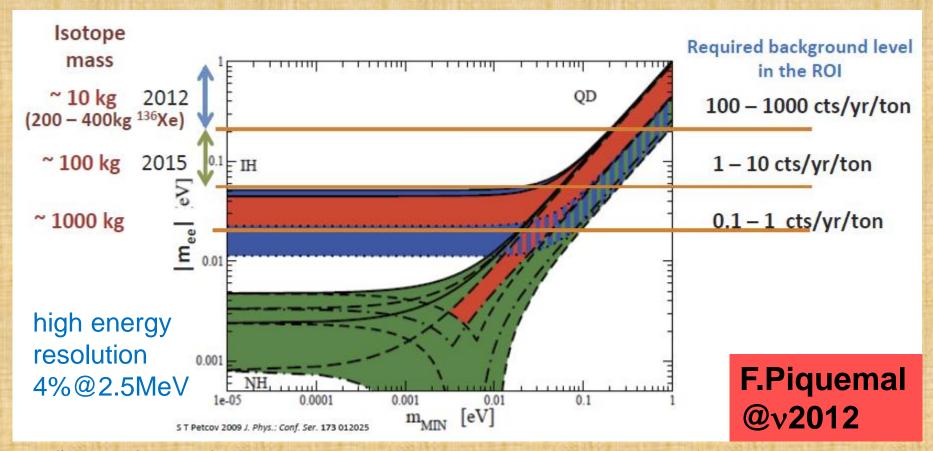

Development of liquid scintillator containing zirconium complex for neutrinoless double beta decay experiment

13th Vienna Conference on Instrumentation VCI2013
February 13th, 2013

Yoshiyuki FUKUDA (Miyagi University of Education)
Shigetaka MORIYAMA (ICRR, University of Tokyo)
Izumi OGAWA (University of Fukui),

Neutrinoless double beta decay

$etaeta$ emitters with $\mathit{Q}_{etaeta}>$ 2 Mev				
Transition	Q_{etaeta} (keV)	Abundance (%) ($^{232}Th = 100$)		
$^{110}Pd \rightarrow ^{110}Cd$	2013	12		
76 Ge \rightarrow 76 Se	2040	8		
$^{124}Sn \rightarrow ^{124}Te$	2288	6		
136 Xe $ ightarrow$ 136 Ba	2479	9		
130 Te $ ightarrow$ 130 Xe	2533	34		
$^{116}Cd \rightarrow ^{116}Sn$	2802	7		
$^{82}Se \rightarrow ^{82}Kr$	2995	9		
100 Mo \rightarrow 100 Ru	3034	10		
$^{96}Zr \rightarrow ^{96}Mo$	3350	3		
150 Nd \rightarrow 150 Sm	3667	6		
48 Ca \rightarrow 48 Ti	4271	0.2		

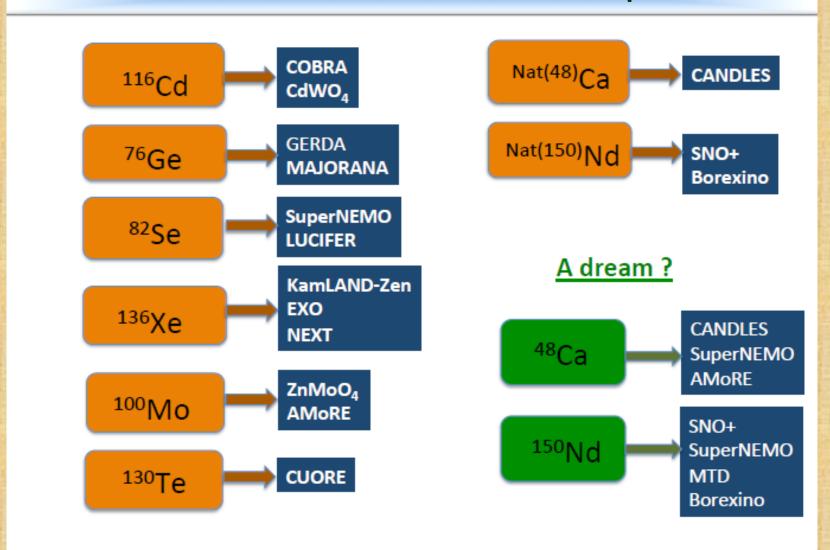

$$[T_{1/2}^{0v}(0^+ -> 0^+)]^{-1} = G_{0v}(E_0, Z)|M_{0v}|^2 < m_v >^2$$

 $T_{1/2}$ ~a(Mt/ Δ EB) a: abundance M: mass

t: meas.time ΔE : energy res. B: BG rate

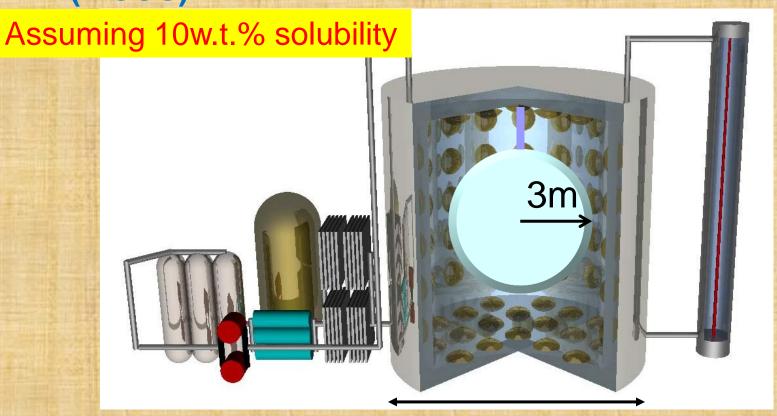
Requirement: Low BG, Large target mass, High energy resolution

For future experiments



http://kds.kek.jp/getFile.py/access?contribId=37&sessionId=16&resId=2&materialId=slides&confId=9151

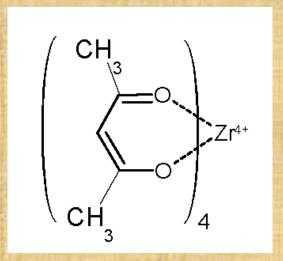
~tons of target will be needed for next generation detector


Studied isotopes

Piquemal@v2012

Detector design for Zr in 100ton LS

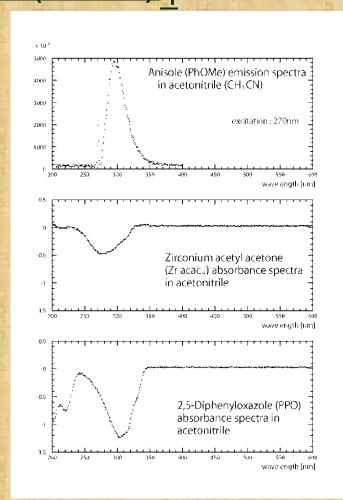
Zirconium Complex in Organic liquid Scintillator (ZICOS)



10m

13th Vienna Conference on Instrumentation

Zirconium β-diketon complex


Zirconium(IV)acetylacetonate(Zr(acac)₄)

Molecular weight: 487.66

- Advantage
 - □ good solubility (over 10w.t.%) in Anisole (PhOMe)
 - Stable and cheep
 - Commercial product
- Disadvantage
 - Low scintillation light yield

What's problem: Absorption spectra of Zr(acac)₄

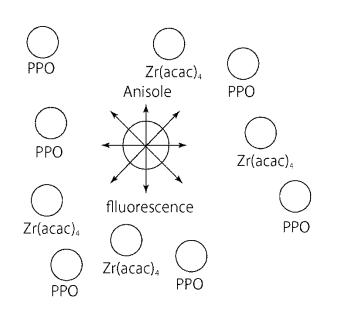
- Emission peak of anisole was observed around 295nm.
- Absorption peak of Zr(acac)₄ was observed around 270nm.

Scintillation light from PhOMe might be absorbed by Zr(acac)₄

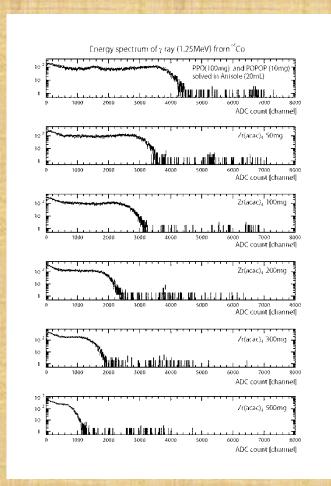
Simple expectation for quenting

Assuming to same cross section

for light

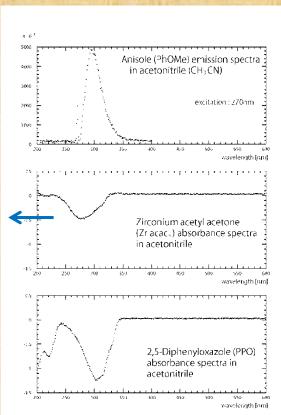

Light yield =
$$L_0 \times \frac{\sigma_1 N_{ppo}}{\sigma_1 N_{ppo} + \sigma_2 N_{Zr}}$$

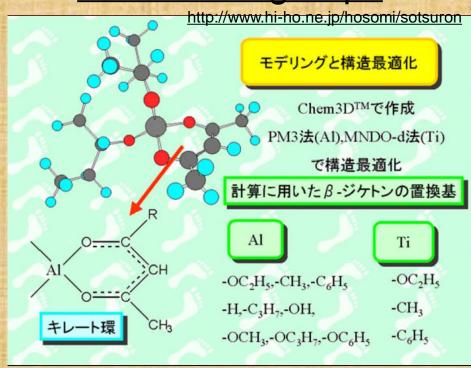
L₀: Light yield of anisole + PPO+POPOP


N_{ppo} and N_{Zr}: No. of

molecular for PPO and Zr(acac)₄

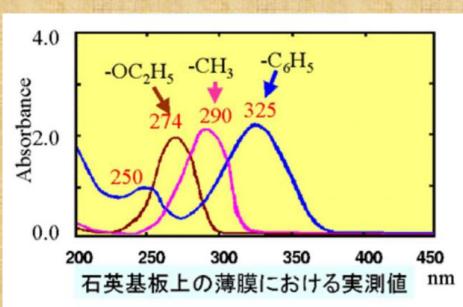
 σ_1, σ_2 : absorbance of PPO and Zr(acac)₄

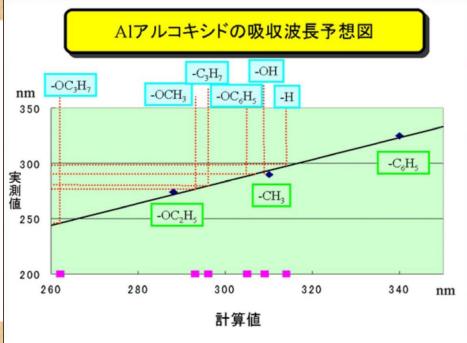

Scontillation Light yield (60Co) with respect to concentration of Zr(acac)₄


concentration of Zr(acac) ₄	Observed channel	Expected channel
0 mg	3850	3850
50mg (1.03X10 ⁻⁴)	3175	3138
100mg (2.05X10 ⁻⁴)	2800	2651
200mg (4.10X10 ⁻⁴)	2000	2018
300mg (6.15X10 ⁻⁴)	1600	1613
500mg (1.03X10 ⁻³)	900	1178

Improve scintillation light yield

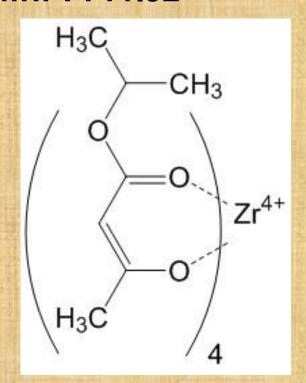
Move absorption peak
How to do it? to shorter wavelength


substituent groups

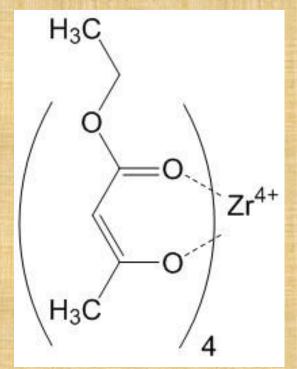

Courtesy of Prof. Yoshiyuki Kowada (Hyogo University of Education)

Absorbance peak for several substituent groups

 Measured absorbance peaks for several substituent groups



Expected absorbance peak for several substituent groups


Zr β-diketon complex introducing substituent groups (β-keto ester complex)

Zr(CH3COCHCOOCH $(CH3))_4 = Zr(iprac)_4$ mw : 711.92

 $Zr(CH3CCOCHCOOCH3)_4 = Zr(etac)_4$

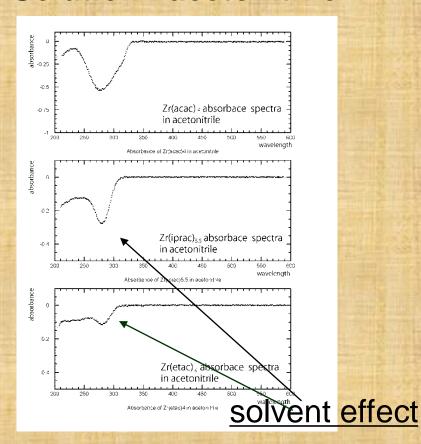
mw: 665.81

Zr β-keto ester complex

Zr(iprac)₄+(iprac)_{1.5} state: powder

Zr(etac)₄ state : dry solid

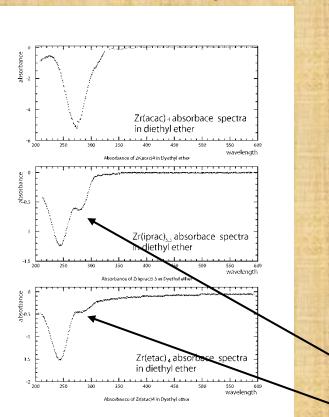
Synthesized by Prof. Takahiro Gunji (Tokyo University of Science)


Solubility > 10 w.t.% for anisole

Absorbance spectra (Solvent effect)

Solution: Hexane

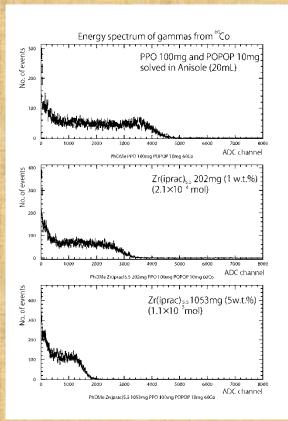
Zr(acac) absorbace spectra. -0.75 in hexane wavelength Absorbance of Zr(acac)4 in hexane absorbance E Zr(iprac)... absorbace_spectra-Absorbance of Zrúprac)5.5 in hexane Š 0.25 Zr(etac), absorbace spectra in hexane 350 400 450 wavelength Absorbance of Zr(etac)4 in hexand


Solution: acetonitrile

Absorption peak moved to shorter wavelength

Absorbance in another solvent

Solution: Diethyl Ether



- Solvent effect could depend on the polarity (dielectric const.)
 - Acetonitrile: 37.5
 - Hexane: 1.89
 - ☐ Anisole: 4.3
- Need solution which has same polarity as anisole
 - Diethyl ether: 4.33


Still absorption peak remains around 270nm

Light yield of scintillation

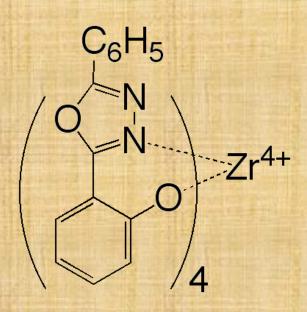
Zr(iprac)_{5.5} in anisole

Zr(etac)₄ in anisole

Same quenting as Zr(acac)₄ was observed

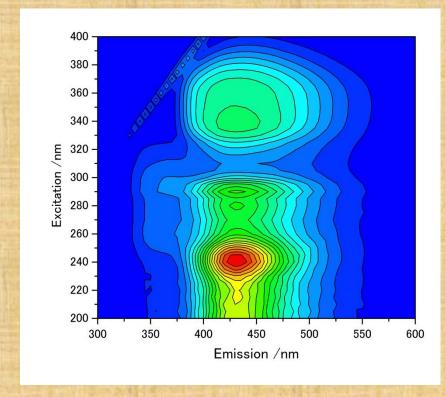
Requirement of scintillator solvent

- Low polarity (dielectric const.)
 - No absorption ~270nm
- Aromatic compounds
 - luminescence >270nm
- Safety for human body and environment
- Usual solvent for L.S.



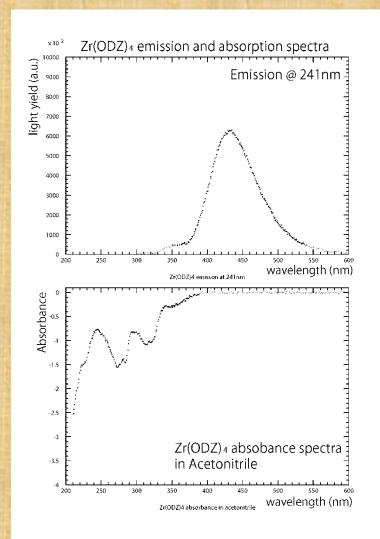
Toluene / Xylene

Solvent	mp	bp	D 4 20	n_{D}^{20}	3	$R_{\rm D}$	μ
Acetic acid	17	118	1.049	1.3716	6.15	12.9	1.6
Acetone	-95	56		1.3587	20.7	16.2	2.8
A cotonitrilo	4.4	02		1 2 4 4 4			2.4
Anisole	-3	154	0.994	1.517	4.33	33	1.3
Benzene	5	80	0.879	1.5011	2.27	26.2	
Bromobenzene	-31	156	1.495	1.558	5.17	33.7	1.5
Carbon disulfide	-112	46	1.274	1.6295	2.6	21.3	
Carbon tetrachloride	-23	77	1.594	1.4601	2.24	25.8	
Chlorobenzene	-46	132	1.106	1.5248	5.62	31.2	1.5
Chloroform	-64	61	1.489	1.4458	4.81	21	1.1
Cyclohexane	6	81	0.778	1.4262	2.02	27.7	
Dibutyl ether	-98	142	0.769	1.3992	3.1	40.8	1.1
o -Dichlorobenzene	-17	181	1.306	1.5514	9.93	35.9	2.2
1,2-Dichloroethane	-36	84	1.253	1.4448	10.36	21	1.8
Dichloromethane	-95	40	1.326	1.4241	8.93	16	1.5
Diethylamine	-50	56	0.707	1.3864	3.6	24.3	0.9
Diethyl ether	-117	35	0.713	1.3524	4.33	22.1	1
1,2-Dimethoxyethane	-68	85	0.863	1.3796	7.2	24.1	1.7
N,N -Dimethylacetamide	-20	166	0.937	1.4384	37.8	24.2	3.7
N,N -Dimethylformamide	-60	152	0.945	1.4305	36.7	19.9	3.8
Dimethyl sulfoxide	19	189	1.096	1.4783	46.7	20.1	3
1,4-Dioxane	12	101	1.034	1.4224	2.25	21.6	0.4
Ethanol	-114	78	0.789	1.3614	24.5	12.8	1.6
Ethyl acetate	-84	77	0.901	1.3724	6.02	22.3	1.8
Ethyl benzoate	-35	213	1.05	1.5052	6.02	42.5	
Formamide	3	211	1.133	1.4475	111	10.6	3.3
Hexamethylphosphoramide	7	235	1.027	1.4588	30	47.7	5.5
Isopropyl alcohol	-90	82	0.786	1.3772	17.9	17.5	1.6
Methanol	-98	65	0.791	1.3284	32.7	8.2	1
2-Methyl-2-propanol	26	82	0.786	1.3877	10.9	22.2	1.6
Nitrobenzene	6	211	1.204	1.5562	34.82	32.7	4.0
Nitromethane	-28	101	1.137	1.3817	35.87	12.5	3.5
Pyridine	-42	115	0.983	1.5102	12.4	24.1	2.3
Totrobydrofuran	100	66	0 888	1 4072	7 58	10.0	1.
oluene	-95	111	0.867	1.4969	2.38	31.1	0.4
richioroethylene	-86	87	1.465	1.4/6/	3.4		0.0
Triethylamine	-115	90	0.726	1.401	2.42	33.1	0.0
Trifluoroacetic acid	-15	72	1.489	1.285	8.55	13.7	2.2
2,2,2-Trifluoroethanol	-44	77	1.384	1.291	8.55	12.4	2.5
Water	O	100		1 333	80 1	3.7	1.8
-Xylene	-25	144	0.88	1.5054	2.57	35.8	0.6


Zirconium complex with luminescence

Zr-ODZ complex

m.w. = 1040.18


Photo luminescence

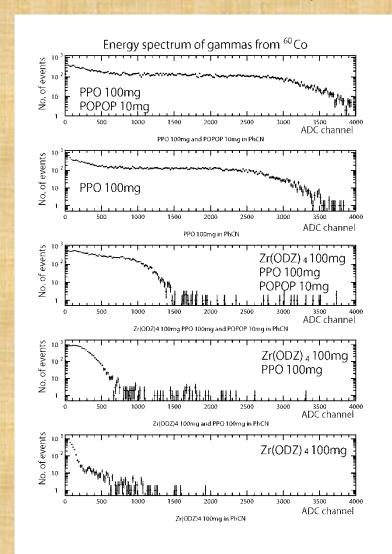
> Solvent : Acetonitrile

➤ Concentration: 3.0 × 10⁻⁵ mol/L

Emission and absorption of Zr(ODZ)₄

 Emission wavelength : 430nm

PMT sensitive


Absorption wavelength:

270nm and 320nm

different from excitation W.L.

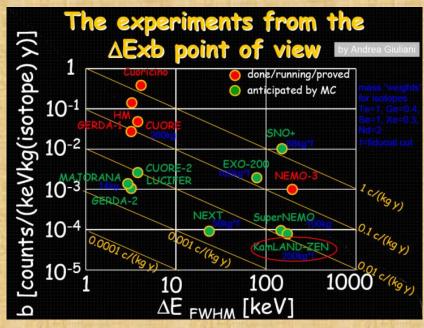
- Solvent : PhCN (Benzonitrile)
- Solubility: ~5w.t.%

Response for y-irradiation

- Most of emission light from PhCN was not used for the emission of Zr(ODZ)₄.
- Secondary excitation of ~340nm was used for the emission of Zr(ODZ)_{4.}
- Estimated Quantum yield was obtained ~30% at first excitation of ~240nm.

Need another solvent which has shorter emission wavelength than PhCN.

Summary

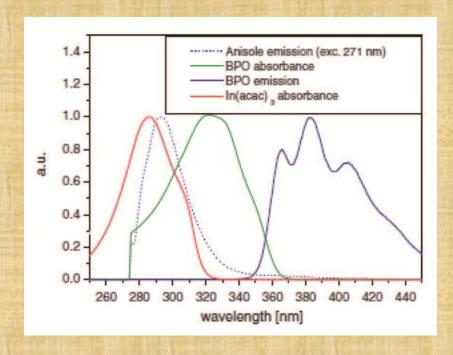

- High solubility of Zr β-keto ester in Anisole
 (>~10w.t.%) for ZICOS detector was achieved.
- Confirmed absorption peak moves to shorter wavelength (275nm → 245nm) by introducing substituent groups.
- Observed scintillation light yield decreased in proportion to the concentration of Zr β-keto ester due to remaining absorption @ 280nm.
 Need low polarity solvent.
- Quantum yield of Zr(ODZ)₄ was achieved ~30%, but it was not used for scintillator due to no overlap between emission of solvent and absorption of ODZ.

BACKUP

13th Vienna Conference on Instrumentation

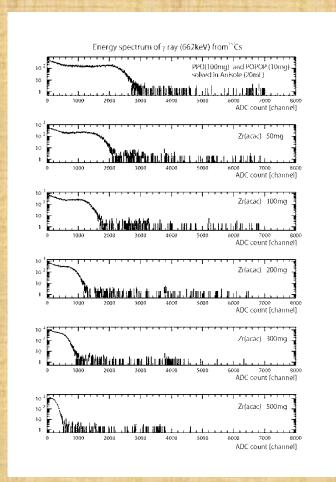
Neutrinoless double beta decay using liquid scintillator

Experimental limits for neutrino mass

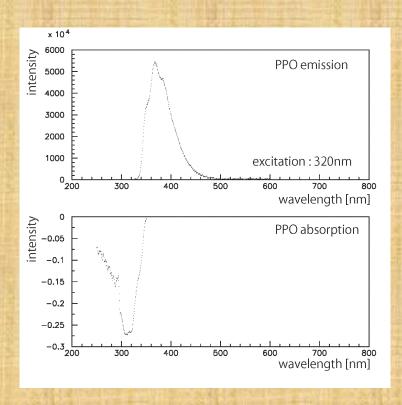


- Requirement for <m,>:50~100meV
 - high energy resolution 4%@2.5MeV
 - low background rate0.01count kg⁻¹ y⁻¹
 - ton scale of target

Liq. Scintillator is easy to scale up target volume


What's problem

Absorption spectra of In(acac)₃ (indium acetyl acetone) was overlapped with the emission spectra from Anisole (Chem. Phys. Lett., 435(2007), 252)


Same overlap of the emission and the absorption spectrum would be occurred even if different metal (Zr) was used.

Scintillation light yield (137Cs) with respect to concentration of Zr(acac)₄

concentration of Zr(acac) ₄	Observed channel	Expected channel
0 mg	2450	2450
50mg	1800	1997
100mg	1400	1687
200mg	950	1284
300mg	650	1038
500mg	300	750

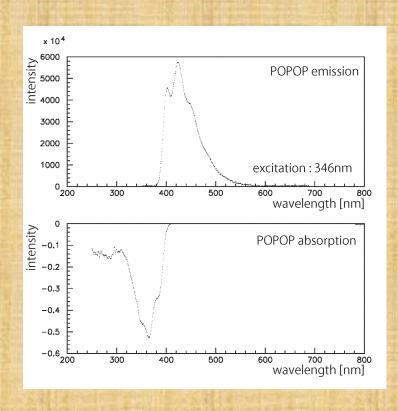

Photo Luminescence and absorption of PPO

Photo luminescence

- Fluorescence device: HORIBA FluoroMax-4
- Absorbance device : HITACHI U-3000
- Solvent : Benzonitrile (PhCN)
- Concentration: 1.0 × 10⁻⁵ mol/L
- > 2,5-Diphenyloxazole
- Molecular mass: 221.26
- Max. emission wavelength: 368.0nm
- Max. absorption wavelength: 309.7nm

Photo Luminescence and absorption of POPOP

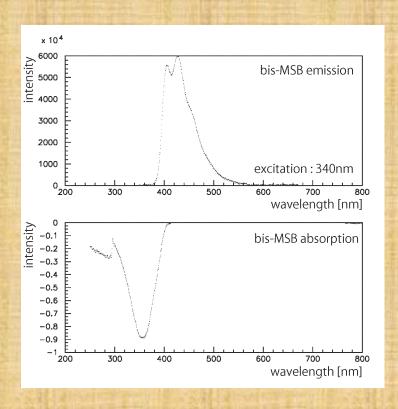


Photo luminescence

- Fluorescence device: HORIBA FluoroMax-4
- Absorbance device : HITACHI U-3000
- Solvent : Benzonitrile (PhCN)
- Concentration: 1.0 × 10⁻⁵ mol/L
- > 1,4-Bis(5-phenyloxazol-2-yl)benzene
- Molecular mass: 364.40
- Max. emission wavelength: 423.6nm
- Max. absorption wavelength: 364.1nm

13th Vienna Conference on Instrumentation

Photo Luminescence and absorption of bis-MSB

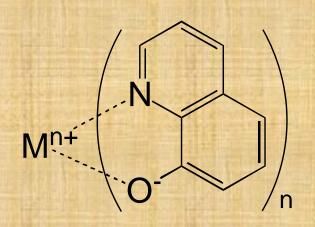
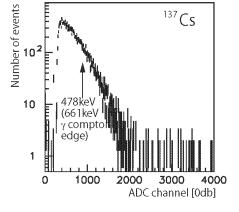
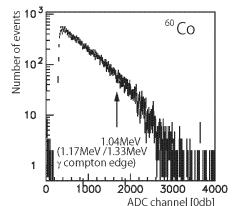


Photo luminescence

- Fluorescence device: HORIBA FluoroMax-4
- Absorbance device : HITACHI U-3000
- Solvent : Benzonitrile (PhCN)
- Concentration: 1.0 × 10⁻⁵ mol/L
- > 1,4-Bis(2-methylstyryl)benzene
- Molecular mass: 310.44
- Max. emission wavelength: 426.6nm
- Max. absorption wavelength: 355.3nm

Response for γ-ray for tetrakis 8quinolinolate Zr complex loaded scintillator


Tetrakis (8-quinolinolate)
 Zirconium complex (ZrQ₄)



M = In, n = 3; M = Zr, n = 4

 ZrQ_4 m.w. = 689.07

ZrQ₄ 50mg in PhCN-POPOP

Quantum
Yield=1.1%
obtained by
optical method

Light Yield to BC505:

=7.3%

13th Vienna Conference on Instrumentation