ZICOS -ジルコニウム96を用いたニュートリノクを放出しない二重ベータ崩壊事象探索実験-

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

2019年8月24日

宮城教育大学教育学部 東京大学宇宙線研究所 福井大学工学部 東京理科大学理工学部 東北大学金属材料研究所 福田善之、安齊太亮、亀井雄斗*、 那仁格日楽*、小畑 旭* 森山茂栄、平出克樹 小川 泉 郡司天博、塚田 学、速水良平 黒澤俊介

96Zrによるニュートリノを放出しない二重ベータ崩壊

 $\beta\beta$ emitters with $Q_{\beta\beta} > 2$ Mev

T	$O(h_{\rm e})$	A hundress $(9/)$ $(22) = (100)$		0.0
Transition	$Q_{\beta\beta}$ (keV)	Abundance ($\%$) (²³² Th = 100)		0.6
$^{110}Pd \rightarrow ^{110}Cd$	2013	12	s ires	
$^{76}Ge \rightarrow ^{76}Se$	2040	8	ti o	
$^{124}Sn \rightarrow ^{124}Te$	2288	6	8 87	0.4
$^{136}Xe \rightarrow ^{136}Ba$	2479	9	nité	
130 Te $ ightarrow$ 130 Xe	2533	34	ä	
$^{116}Cd \rightarrow ^{116}Sn$	2802	7		0.0
$^{82}Se \rightarrow ^{82}Kr$	2995	9		0.2
$^{100}Mo \rightarrow ^{100}Ru$	3034	10		
⁹⁶ Zr → ⁹⁶ Mo	3350	3		
$^{150}Nd \rightarrow ^{150}Sm$	3667	6		
$^{48}Ca \rightarrow ^{48}Ti$	4271	0.2		

 $[T_{1/2}^{0\nu}(0^+ -> 0^+)]^{-1} = G_{0\nu}(E_0,Z) |M_{0\nu}|^2 < m_{\nu}^2 >^2 / m_e^2$

 $T_{1/2} \sim a(Mt/\Delta E \cdot B)^{1/2}$ a: abundance M: target mass

t: measuring time ΔE : energy resolution B: BG rate

Requirement : Low BG, Large target mass, High E-resolution

Liquid Scintillator:

- (1) 10 wt.% Zr(iprac)₄ loaded in anisole
- (2) 2.5% at 3.35MeV of energy resolution with 64% photo coverage and long attenuation length.

Pure water surrounding inner detector in order to veto muons and external backgrounds.

Inner detector with ~64% photo coverage 20" PMT including 1.7ton Zirconium loaded 113 tons LS in fiducial volume. (Total vol. : 180 tons)

2019年8月24日

複数の原子核による観測で核

行列要素の不定性を抑える

10m

0vββ事象の観測

目的

(1)

(2)

Zr(iPrac)₄を溶解させた液体シンチレータ

 $Zr(CH_3COCHCOOCH(CH_3)_2)_4$ = $Zr(iPrac)_4$ mw : 663.87

Zr(iprac)₄ 2242mg, PPO 999mg and POPOP 10mg solved in 20mL Anisole

> 70g/L of Zirconium could be solved in anisole.

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

2019年8月24日

<u>光量とエネルギー分解能の濃度依存性</u>

Measured at several conditions of PPO concentration

ङ्ख 35.0

.03MeV electron

Inergy resolution at

30.0

25.0

20.0

15.0

10.0

5.0

0

2.0

 $48.7 \pm 7.1\%$ light yield to standard cocktail was obtained at 10wt.% concentration.

6.0

8.0

concentration [wt.%]

PPO 0.5 wt.%

PPO 1.5 wt.%

PPO 4.8 wt.%

4.0

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

10.0

<u>ZICOS検出器のコンセプトデザイン</u>

Phys.Rev.Lett. 117 (2016) 082503

⁹⁶Zr : 45kg (nat.) → 865kg(50% enrich)→1/20 BG $T_{1/2}^{0\nu} > 4 \times 10^{25}$ yrs → 2 × 10²⁶yrs → ~1 × 10²⁷yrs

208Thの崩壊図

The vertex reconstructed by scintillation make it within fiducial volume due to mis-fitting of gammas.

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

	y(i)
Radiations	(Bq-s) ⁻¹
beta- 5	2.27×10 ⁻⁰³
beta- 8	3.09×10 ⁻⁰²
beta- 10	6.30×10 ⁻⁰³
beta- 11	2.45×10 ⁻⁰¹
beta- 12	2.18×10^{-01}
beta- 13	4.87×10 ⁻⁰¹
ce-K, gamma 3	4.04×10 ⁻⁰³
gamma 4	6.31×10 ⁻⁰²
ce-K, gamma 4	2.84×10 ⁻⁰²
ce-L, gamma 4	4.87×10 ⁻⁰³
gamma 6	2.26×10 ⁻⁰¹
ce-K, gamma 6	1.97×10^{-02}
ce-L, gamma 6	3.32×10 ⁻⁰³
gamma 7	8.45×10 ⁻⁰¹
ce-K, gamma 7	1.28×10^{-02}
ce-L, gamma 7	3.51×10 ⁻⁰³
gamma 13	1.81×10^{-02}
gamma 15	1.24×10 ⁻⁰¹
ce-K, gamma 15	2.80×10^{-03}
gamma 19	3.97×10 ⁻⁰³
gamma 25	9.92×10 ⁻⁰¹

 $0\nu\beta\beta$ event

Reconstructed vertex by scintillation light

<u>β</u> decay

2.6MeV γ

Reconstructed vertex by Cherenkov light Balloon or surface of detector

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

位相幾何学的情報:平均角

Average angle with respect to averaged direction for single electron seems to have a peak at 48 degree which is almost same as Cherenkov angle.

<u>平均角を用いた背景事象の除去</u>

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

⁹⁰Sr/90Yのベータ事象による波形観測

⁹⁰Yのベータ崩壊事象はチェレンコフ閾値(0.7MeV)以上のエネルギーを持つ

高統計のベータ線事象 を使用して、シンチレー ションとチェレンコフ光の 波形を観測

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

シンチレーション光とチェレンコフ光の平均波形分布

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

シンチレーション光の下 降時間は6.5ns ● チェレンコフ光の下降時 間は2.4ns (fast)と2.7ns (slow) ● 以前測定したコンプトン 電子の波形とほぼ同様 チェレンコフ光の波形は 上昇・下降ともにシンチ レーション光の波形よ も有意に短い

チェレンコフ光による波高 分別法が開発可能

<u>今後の計画</u>

① 短期計画(2019~21)

- 波高分別法の開発
- エネルギー分解能の実測定
- 位相幾何学情報(平均角)の測定
- BG事象除去の実測(⁶⁰Coのβγ事象を利用)
 中期計画(2022~26)
 - 2"PMTプロトタイプ測定器(半径~35cm)
 - 6.5kg Zr(iPrac)₄ ~80gの⁹⁶Zr(自然存在比)
 - 既存の水タンク使用?
 - ⁹⁶Zr 2vββの観測 T^{2v}_{1/2}の測定(2.1x10¹⁹y)
 - ⁹⁶Zr 0vββの観測 T^{0v}_{1/2}下限値の更新
 - ⁹⁶Zrの濃縮→CANDLESの方法?

<u>今後の計画</u>

① 短期計画(2019~21)

- 波高分別法の開発
- エネルギー分解能の実測定
- 位相幾何学情報(平均角)の測定
- BG事象除去の実測(⁶⁰Coのβγ事象を利用)
 中期計画(2022~26)
 - 2"PMTプロトタイプ測定器(半径~35cm)
 - 6.5kg Zr(iPrac)₄ ~80gの⁹⁶Zr(自然存在比)
 - 既存の水タンク使用?
 - ⁹⁶Zr 2vββの観測 T^{2v}_{1/2}の測定(2.1x10¹⁹y)
 - ⁹⁶Zr 0vββの観測 T^{0v}_{1/2}下限値の更新
 - ⁹⁶Zrの濃縮→CANDLESの方法?

エネルギー分解能の実測定

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

2019年8月24日

<u>今後の計画</u>

① 短期計画(2019~21)

- 波高分別法の開発
- エネルギー分解能の実測定
- 位相幾何学情報(平均角)の測定
- BG事象除去の実測(⁶⁰Coのβγ事象を利用)
 中期計画(2022~26)
 - 2"PMTプロトタイプ測定器(半径~35cm)
 - 6.5kg Zr(iPrac)₄ ~80gの⁹⁶Zr(自然存在比)
 - 既存の水タンク使用?
 - ⁹⁶Zr 2vββの観測 T^{2v}_{1/2}の測定(2.1x10¹⁹y)
 - ⁹⁶Zr 0vββの観測 T^{0v}_{1/2}下限値の更新
 - ⁹⁶Zrの濃縮→CANDLESの方法?

位相幾何学情報の測定

HUNI-ZICOSによる平均角分布の測定

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

2019年8月24日

<u>今後の計画</u>

① 短期計画(2019~21)

- 波高分別法の開発
- エネルギー分解能の実測定
- 位相幾何学情報(平均角)の測定
- BG事象除去の実証(⁶⁰Coのβγ事象を利用)
 中期計画(2022~26)
 - 2"PMTプロトタイプ測定器(半径~35cm)
 - 6.5kg Zr(iPrac)₄ ~80gの⁹⁶Zr(自然存在比)
 - 既存の水タンク使用?
 - ⁹⁶Zr 2vββの観測 T^{2v}_{1/2}の測定(2.1x10¹⁹y)
 - ⁹⁶Zr 0vββの観測 T^{0v}_{1/2}下限値の更新
 - ⁹⁶Zrの濃縮→CANDLESの方法?

BG事象除去の実測

UNI-ZICOSによるβγ事象の平均角分布を測定

新学術領域「地下から解き明かす宇宙の歴史と物質の進化」領域研究会

2 中期計画(2022~26) <u>2"PMTプロトタイプ測定器(半径~25cm)</u> 6.5kg Zr(iPrac)₄ ~30gの⁹⁶Zr(自然存在比) ⁹⁶Zr $2\nu\beta\beta$ の観測 $T_{1/2}^{2\nu}$ の測定(2.1x10¹⁹y) ⁹⁶Zr $0\nu\beta\beta$ の観測 $T_{1/2}^{0\nu}$ 下限値の更新 既存の水タンク使用?(直径5mくらい) ⁹⁶Zrの濃縮→CANDLESの方法?

③ 0v事象探索(2027~) T_{1/2}>10²⁷年 m_v~3meV

- 検出器デザイン?
- どこで行う? (既存の水タンク? 直径12m)
- ${}^{96}Zr$ 濃縮した $ZrCl_4$ の合成(精錬?)
- コラボレーション?

(不可能)

20インチ 650本X60万円=4億円
③本体(外部タンクを除く)+エレキ <10億円
④12tonのZr(iPrac)₄の合成 数億円

Zrを高濃度に溶解させた液体シンチレータを開発 エネルギー分解能は2.7%@3.35MeVと予想 → 高いPhoto coverageで確認する必要 ²⁰⁸Thのβγ背景事象の除去 → チェレンコフ光の位相幾何学情報が有効 ① シンチレーション光を受光したPMTからチェレン コフ光を受光したPMTを抜き出すための波形分 別法の開発 ② 位相幾何学情報の実測 ③ βγ事象を用いた位相幾何学情報による除去Ø 実証 数年内にプロトタイプ測定器による物理観測開始と 技術的課題(PMT高速化と濃縮)の解決