Supported by Grant-in-Aid for Scientific Research (C) 24540295 and Grant-in-Aid for Scientific Research on Innovative Areas 24104501

ジルコニウム96を用いたニュートリノを 放出しない2重ベータ崩壊事象の探索

新学術領域「先端加速器LHCが切り拓くテラスケールの素粒子物理学」

研究会 2013年5月24日

宮城教育大学 教育学部 福田 善之

Neutrinoless double beta decay

$[T_{1/2}^{0\nu}(0^+ ->0^+)]^{-1} = G_{0\nu}(E_0,Z)|M_{0\nu}|^2 < m_{\nu}>^2$ T_{1/2}~a(Mt/\DeltaEB) a: abundance M: mass t: meas.time \DeltaE: energy res. B: BG rate Requirement : Low BG, Large target mass, High energy resolution

For future experiments

http://kds.kek.jp/getFile.py/access?contribId=37&sessionId=16&resId=2&materialId=slides&confId=9151

~tons of target will be needed for next generation detector

Future experiments for Neutrinoless

double beta decay

Experimental requirement for BG rate and ∆E

 To achive m_v < 100meV
 high energy resolution 4%@2.5MeV
 low background rate 0.01count kg⁻¹ y⁻¹
 ton scale of target

Liq. Scintillator is easy to scale up target volume

depth: 2092 m (~6010 m.w.e.) ~70 muons/day

idea to load Xe into LS is from Raju PRL72,1411(1994)

~320kg 90% enriched ¹³⁶Xe installed so far total 600+ kg in the mine production reaches 700kg in this year

Good features of us K. noue@v2012

- running detector
 - \rightarrow relatively low cost and quick start
- huge and clean (1200m³, U: 3.5x10⁻¹⁸g/g, Th: 5.2x10⁻¹⁷)
 → negligible external gamma

(Xe and mini-balloon need to be clean)

- Xe-LS can be purified, mini-balloon replaceable if necessary, with relatively low cost
 - \rightarrow highly scalable (up to several tons of Xe)
- No escape or invisible energy from β, γ \rightarrow BG identification relatively easy
- anti-neutrino observation continues
 - \rightarrow geo-neutrino w/o japanese reactors

Disadvantages toward an ultimate sensitivity

× relatively poor energy resolution

tolerable thanks to slow $2\nu 2\beta$ and low BG

- × no β/γ discrimination so far
- × delicate balloon film
- × limited LS composition (for density matching)

Energy spectrum obtained by KamLAND

PRL 110.062502 (2013)

Most possible BG \square ^{110m}Ag (β - γ , β _{max}=3,02MeV, $\tau = 360d)$ \square ²¹⁴Bi on IB (β - γ , $\beta_{max} = 3,27 MeV, \tau = 15d$) Half-life of 0νββ $T_{1/2}^{0} > 1.9 \times 10^{25} \text{ y}(90\% \text{C.L.})$ neutrino mass limit (conbined by EXO200) mv < 120 - 250 mev

Detector design for ZICOS experiment Zirconium Complex in Organic liquid Scintillator (ZICOS) for double beta decay experiment Assuming 10w.t.% solubility 3m

Zirconium loaded 100ton LS

10m

May 24th, 2013

Zirconium β-diketon complex

 Zirconium(IV) acetylacetonate (Zr(acac)₄)

Advantage good solubility (over 10w.t.%) in Anisole (PhOMe) □ Stable and cheep Commercial product Disadvantage Low scintillation light yield

Molecular weight : 487.66

What's problem

Absorption spectra of In(acac)₃ (indium acetyl acetone) was overlapped with the emission spectra from Anisole (Chem. Phys. Lett., 435(2007), 252)

Same overlap between the emission and the absorption could be occurred even if different metal (Zr) was used.

Observed absorption spectra of Zr(acac)₄

 Emission peak of anisole was observed around 295nm.
 Absorption peak of Zr(acac)₄ was observed around 270nm.

Scintillation light from anisole (PhOMe) might be absorbed by Zr(acac)₄

Simple expectation for quenching

Assuming to same cross section for light

Light yield = $L_0 \times \frac{\sigma_1 N_{ppo}}{\sigma_1 N_{ppo} + \sigma_2 N_{Zr}}$

L₀: Light yield of anisole + PPO + POPOP N_{ppo}, N_{Zr}: Number of molecular for PPO and Zr(acac)₄ σ_1, σ_2 : cross section of absorbance for PPO and Zr(acac)₄

Scintillation Light yield (⁶⁰Co) with respect to concentration of Zr(acac)₄

concentration of Zr(acac) ₄	Observed channel	Expected channel
0 mg	3850	3850
50mg (1.03X10 ⁻⁴)	3175	3138
100mg (2.05X10 ⁻⁴)	2800	2651
200mg (4.10X10 ⁻⁴)	2000	2018
300mg (6.15X10 ⁻⁴)	1600	1613
500mg (1.03X10 ⁻³)	900	1178

PPO 100mg : 4.52X10⁻⁴ mol

Improvement of scintillation light yield

Move absorption peak How to do it? to shorter wavelength

substituent groups

Courtesy of Prof. Yoshiyuki Kowada (Hyogo University of Education)

Absorbance peak for several substituent groups

Measured absorbance peaks for several substituent groups

Expected absorbance peak for several substituent groups

-OH

-CH2

320

-H

-OC H

300

計算值

新学術領域研究会

-C.H.

340

nm

Zr β-keto ester complex Zr(iprac)₄+(iprac)_{1.5} state: powder

Zr(etac)₄ state : dry solid

Synthesized by Prof. Takahiro Gunji (Tokyo University of Science)

Solubility > 10 w.t.% for anisole

Absorbance spectra (Solvent effect)

Solution : Hexane

Solution : acetonitrile

Absorption peak moves to shorter wavelength, however it depends on the polarity of solvent.

Absorbance in liquid scintillator

Solution : Diethyl Ether

Solvent effect could depend on the polarity (dielectric const.)

 Acetonitrile : 37.5
 Hexane : 1.89
 Anisole : 4.3

 Need solution which has same polarity as anisole
 Diethyl ether : 4.33

Still solvent effect remains around 270nm

Light yield of Zr β-keto ester scintillator

Zr(iprac)_{5.5} in anisole

Zr(etac)₄ in anisole

Same quenching as Zr(acac)₄ was observed

Requirement of scintillator solvent

Low polarity (low dielectric constant)

 No absorption ~270nm

 Aromatic compounds

 luminescence >270nm

 Keep high solubility > ~10%
 Keep luminescence from solvent

Possible solvent: Toluene / Xylene

Solvent	mp	bp	D_{4}^{20}	$n_{\rm D}^{20}$	3	R _D	μ
Acetic acid	17	118	1.049	1.3716	6.15	12.9	1.68
Acetone	-95	56	0.788	1.3587	20.7	16.2	2.85
Acctonitrilo	44	00	0 792	1 0 4 4 4	27 5	44.4	2.45
Anisole	-3	154	0.994	1.517	4.33	33	1.38
Benzene	5	80	0.879	1.5011	2.27	26.2	(
Bromobenzene	-31	156	1.495	1.558	5.17	33.7	1.55
Carbon disulfide	-112	46	1.274	1.6295	2.6	21.3	C
Carbon tetrachloride	-23	77	1.594	1.4601	2.24	25.8	0
Chlorobenzene	-46	132	1.106	1.5248	5.62	31.2	1.54
Chloroform	-64	61	1.489	1.4458	4.81	21	1.15
Cyclohexane	6	81	0.778	1.4262	2.02	27.7	C
Dibutyl ether	-98	142	0.769	1.3992	3.1	40.8	1.18
o -Dichlorobenzene	-17	181	1.306	1.5514	9.93	35.9	2.27
1,2-Dichloroethane	-36	84	1.253	1.4448	10.36	21	1.86
Dichloromethane	-95	40	1.326	1.4241	8.93	16	1.55
Diethylamine	-50	56	0.707	1.3864	3.6	24.3	0.92
Diethyl ether	-117	35	0.713	1.3524	4.33	22.1	1.3
1,2-Dimethoxyethane	-68	85	0.863	1.3796	7.2	24.1	1.71
N,N -Dimethylacetamide	-20	166	0.937	1.4384	37.8	24.2	3.72
N,N -Dimethylformamide	-60	152	0.945	1.4305	36.7	19.9	3.86
Dimethyl sulfoxide	19	189	1.096	1.4783	46.7	20.1	3.9
1,4-Dioxane	12	101	1.034	1.4224	2.25	21.6	0.45
Ethanol	-114	78	0.789	1.3614	24.5	12.8	1.69
Ethyl acetate	-84	77	0.901	1.3724	6.02	22.3	1.88
Ethyl benzoate	-35	213	1.05	1.5052	6.02	42.5	2
Formamide	3	211	1,133	1.4475	111	10.6	3.37
Hexamethylphosphoramide	7	235	1.027	1.4588	30	47.7	5.54
Isopropyl alcohol	-90	82	0.786	1.3772	17.9	17.5	1.66
Methanol	-98	65	0.791	1.3284	32.7	8.2	1.7
2-Methyl-2-propanol	26	82	0.786	1.3877	10.9	22.2	1.66
Nitrobenzene	6	211	1.204	1.5562	34.82	32.7	4.02
Nitromethane	-28	101	1.137	1.3817	35.87	12.5	3.54
Pyridine	-42	115	0.983	1.5102	12.4	24.1	2.37
Totrobydrofuron	100	66	0 888	1 4072	7 59	10.0	1 75
oluene	-95	111	0.867	1.4969	2.38	31.1	0.43
Trichloroethylene	-86	87	1.465	1.4767	3.4	25.5	0.81
Triethylamine	-115	90	0.726	1.401	2.42	33.1	0.87
Trifluoroacetic acid	-15	72	1.489	1.285	8.55	13.7	2.26
2,2,2-Trifluoroethanol	-44	77	1.384	1.291	8.55	12.4	2.52
Water	0	100	0 998	1 333	80 1	37	1.82
-Xylene	-25	144	0.88	1.5054	2.57	35.8	0.62

Zirconium complex with luminescence

Zr-ODZ complex

m.w. = 1040.18

Photo luminescence

Solvent : Acetonitrile Concentration : 3.0 × 10⁻⁵ mol/L

Emission and absorption spectrum of <u>Zr(ODZ)</u>₄ • Emission wavelength

Emission wavelength : 430nm

 PMT sensitive
 Absorption wavelength: 270nm and 320nm

different from excitation W.L.
Solvent : PhCN (Benzonitrile)
Solubility : ~5w.t.%

Response for y-irradiation

 Most of emission light from PhCN was not used for the emission of Zr(ODZ)₄

- third excitation of ~340nm from PPO was used for the emission of Zr(ODZ)₄
- Estimated Quantum yield was obtained ~30% at first excitation of ~240nm.

Need another solvent which has shorter emission wavelength than PhCN.

Summary

- High solubility of Zirconium β-keto ester in Anisole (>~10w.t.%) was achieved.
- Confirmed absorption peak moves to shorter wavelength (275nm → 245nm) by introducing ester substituent groups.
- Observed scintillation light yield decreased in proportion to the concentration of Zr β-keto ester complex due to solvent effect Need low polarity solvent
- To avoid solvent effect, we will synthesize new complex tetrakis (diethyl malonato) zirconium.

Tetrakis (diethyl malonato) Zr compex

 $Zr(CH_3CH_2OCOCHCO)$ $OCH_2CH_3)_4 = Zr(deml)_4$ mw : 727.84

 $Zr(CH_3CCOCHCOO CH_3)_4 = Zr(etac)_4$ mw : 665.81

<u>Absorbance spectrum for β-keto</u> ester ligands

BACKUP

Tetrakis 8-quinolinolate Zr complex loaded scintillator

Tetrakis (8-quinolinolate)
 Zirconium complex (ZrQ₄)

M = In, n = 3; M = Zr, n = 4

 ZrQ_4 m.w. = 689.07

ZrQ₄ 50mg in PhCN-POPOP

Quantum Yield=1.1% obtained by optical method

Light Yield to BC505: =<u>7.3%</u>

Scintillation light yield (¹³⁷Cs) with respect to concentration of Zr(acac)₄

concentration of Zr(acac) ₄	Observed channel	Expected channel
0 mg	2450	2450
50mg	1800	1997
100mg	1400	1687
200mg	950	1284
300mg	650	1038
500mg	300	750

Photo Luminescence and absorption of PPO

- Photo luminescence
 Fluorescence device: HORIBA FluoroMax-4
 Absorbance device : HITACHI U-3000
 Solvent : Benzonitrile (PhCN)
 Concentration : 1.0 × 10⁻⁵ mol/L
- 2,5-Diphenyloxazole
 Molecular mass : 221.26
 Max. emission wavelength : 368.0nm
- Max. absorption wavelength : 309.7nm

Photo Luminescence and absorption of POPOP

Photo luminescence
Fluorescence device: HORIBA FluoroMax-4
Absorbance device : HITACHI U-3000
Solvent : Benzonitrile (PhCN)
Concentration : 1.0 × 10⁻⁵ mol/L

1,4-Bis(5-phenyloxazol-2yl)benzene
Molecular mass : 364.40
Max. emission wavelength : 423.6nm
Max. absorption wavelength : 364.1nm

Photo Luminescence and absorption of bis-MSB

- Photo luminescence
 Fluorescence device: HORIBA FluoroMax-4
 Absorbance device : HITACHI
- U-3000
- Solvent : Benzonitrile (PhCN)
- Concentration : 1.0 × 10⁻⁵ mol/L
- 1,4-Bis(2-methylstyryl)benzene
 Molecular mass : 310.44
 Max. emission wavelength : 426.6nm
 Max. absorption wavelength :

355.3nm