ジルコニウム96を用いたニュートリノを放出 しない二重ベータ崩壊事象の探索 XIV ~高速PMTとFADCを用いた低エネルギー電子による チェレンコフ光の波形観測~

Supported by Grant-in-Aid for Scientific Research (c) 18K03664

日本物理学会 第74回年次大会 2019年3月16日

宮城教育大学教育学部

東京大学宇宙線研究所 福井大学工学部 東京理科大学理工学部 東北大学金属材料研究所 福田善之、安齊太亮* 鲁并雄斗*、 那仁格日楽*、小畑 旭* 森山茂栄、平出免樹 小川 泉 郡司天博、塚田 学、速水良平 黒澤俊介

<u>⁹⁶Zrを用いたニュートリノを放出しないニ重ベータ崩壊事象</u> <u>探索実験-ZICOS</u>

⁹⁶Zr : 45kg (nat.) → 865kg(50% enrich)→1/20 BG $T_{1/2}^{0\nu} > 4 \times 10^{25}$ yrs → 2×10^{26} yrs → $\sim 1 \times 10^{27}$ yrs

Recovering the energy resolution

Measured at several conditions of PPO concentration

5wt.% PPO helps again the energy resolution $35\% \rightarrow 13\%$. at 10wt.% of Zr(iprac)₄.

 $\frac{13.0 \pm 2.0\%}{\sqrt{(64\%/9.2\%)X(3.35MeV/1.03MeV)}}$ = 2.7 ± 0.4% at 3.35MeV

Almost achieved goal ! (not confirmed yet)

<u>チェレンコフ光の平均角を用いた背景事象の除去</u>

日本物理学会 第74回年次大会

2019年3月16日

<u>今回使用した光電子増倍管</u> 浜松ホトニクス H2431-50 (R2083)

感度:400K
ダイノード構造/段数 L(ラインフォーカス)/8段
印加電圧:3000V
ゲイン:2.5×10⁶ 暗電流:100nA (H6410:10nA)
時間特性:0.37ns(TTS) 0.7ns(上昇時間)

2019年3月16日

<u>今回使用したFADC digitizer</u>

CAEN V1751

- 10 bit 2 GS/s (interleaved) 1 GS/s ADC
- 4-8 channel
- FPGA for real time Digital Pulse Processing:
 - Pulse Shape Discrimination (DPP-PSD)
 - Zero Length Encoding (DPP-ZLEplus)

- 0.2 or 1 Vpp input dynamics single ended or 1 Vpp differential
- 16-bit programmable DC offset adjustment: ±0.5 V / ±0.1 V
- Trigger Time stamps
- Memory buffer: up to 14.4 MS/ch (28.8 MS/ch @2 GS/s)
- Programmable event size and pre-post trigger adjustment
- Analog Sum/Majority and digital over/under threshold flags for Global Trigger logic
- Front panel clock In/Out available for multiboard synchronisation (direct feed through or PLL based synthesis)
- 16 programmable LVDS I/Os
- Optical Link interface (CAEN proprietary protocol)
- VME64X compliant interface
- A2818(PCI) / A3818 (PCIe) Controller available for handling up to 8/32 modules Daisy chained via Optical Lin
- Firmware upgradeable via VME/Optical Link
- Libraries, Demos (C and LabView) and Software tools for Windows and Linux

<u>⁹⁰Sr/⁹⁰Yのベータ事象による波形観測</u>

⁹⁰Yのベータ崩壊事象はチェレンコフ閾値(0.7MeV)以上のエネルギーを持つ

高統計のベータ線事象 を使用して、シンチレー ションとチェレンコフ光の 波形を観測

測したシンチレーション光の信号

日本物理学会 第74回年次大会

Ω

0.

1.000

0.

Û.

観測したチェレンコフ光の信号

<u>シンチレーション光とチェレンコフ光の平均波形分布</u>

● シンチレーション光の下 降時間は6.5ns ● チェレンコフ光の下降時 間は2.4ns (fast)と2.7ns (slow) 以前測定したコンプトン 電子の波形とほぼ同様 ● <u>チェレンコフ光の波形は</u> 上昇・下降ともにシンチ レーション光の波形よ も有意に短い チェレンコフ光による波形

分別の可能性を示唆

標準シンチレータにおけるシンチレーションとチェレンコフ光

FADC counts 80 Scintillation 60 40Cherenkov (fast) 2055 60 65 7075 80 FADC time [ns] FADC counts 80 Scintillation 60 Cherenkov (slow) 402055 65 95 FADC time [ns]

測定の条件を揃えて、シン チレーション光とチェレンコ フ光の波形をプロット

立ち上がりの2~3nsの波形 の違いを判断するPSDが 必要(実際には、ZICOS用 液体シンチレータの光量は 標準シンチレータの光分な ので、もう少し見やすいは ず)

波形比較

<u>電子によるシンチレーションパルス波形の比較</u>

 一定方向に後方散乱した ガンマ線との同時計測で コンプトン散乱による単色 電子を用いて、シンチレー ション光の平均パルス波 形を観測
 ⁹⁰Srのベータ線で観測され たシンチレーション光のパ ルス波形と一致

電子事象によるシンチ レーション光の平均波形 は確定。

日本物理学会 第74回年次大会

2019年3月16日

- ⁹⁰Sr/⁹⁰Yのベータ線を用いて、標準液体シンチレータ およびアニソールからの信号波形を高統計事象で 観測した。
- チェレンコフ光の波形は、シンチレーション光の波形より有意に早い上昇時間(と下降時間)を有していることが明らかになった。
- シンチレーション光の波形はコンプトン散乱の電子 事象で観測された波形と一致した。
- 以上から、低エネルギー電子によるシンチレーション 事象の信号波形から、チェレンコフ光受光の有無を 分別できる可能性が示唆された。

 Zrを含有したZICOS用液体シンチレータを用いて、 チェレンコフ光の有無を判断する波形分別法を開発
 光電面率60%の新規ライトガイドを用いて、ZICOS 用液体シンチレータのエネルギー分解能測定

<u>今後の計画(2)</u>

- 新規ライトガイドを用いて、低エネルギー電子事象によるチェレンコフ事象の方向依存性の有無を確認
 HUNI-ZICOS検出器による平均角分布の測定
 - →チェレンコフ光によるBG除去の実証

BACKUP

日本物理学会 第74回年次大会

2019年3月16日

Zirconium β-keto ester complex

 $Zr(CH_{3}COCHCOOCH(CH_{3})_{2})_{4}$ $Zr(CH_{3}COCHCOOCH_{2}CH_{3})_{4}$ = $Zr(iprac)_{4}$ = $Zr(etac)_{4}$ mw : 663.87 mw : 607.76

Synthesized by Prof. Gunji.

Absorption wavelength could be shorten.

日本物理学会 第74回年次大会

2019年3月16日

<u>Absorbance spectra for Zr(iPrac)</u>₄ <u>and PPO</u>

Absorption peaks of $Zr(iPrac)_4$ and PPO found around at 278nm and 310nm, respectively.

PPO may cover the emission of Anisole, in spite of absorption of $Zr(iPrac)_{4.}$

Recovering the light yield

Measured at several conditions of PPO concentration

5wt.% PPO helps actually recovering the scintillation light yield.

 $48.7 \pm 7.1\%$ light yield to standard cocktail was obtained at 10wt.% concentration.

<u>標準シンチレータにおける左右PMTのシンチレーション波</u> 形の比較

Hamamatsu H2431-50

対面のPMTに光量がある事象を選択 (但し、光量は自分より小さいもの)

電子で観測された事象のパルス波形との比較

電子で観測された事象 の波形と比較すると、シ ンチレーション光の平均 パルス波形よりもチェレ ンコフ光の平均パルス波 形の方が比較的良く一 致している 若干立ち下がり部分が 合わない(遅い)。→電 子とミューオンの違い

アニソールで観測された 電子のパルス波形は、 チェレンコフ光によるもの と考えられる。

日本物理学会 第74回年次大会

Transparency of UV filter

Neutrinoless double beta decay

			ββ0ν
Transition	Q_{etaeta} (keV)	Abundance (%) ($^{232}Th = 100$)	0.6-
$^{110}Pd \rightarrow ^{110}Cd$	2013	12	
$^{76}Ge \rightarrow ^{76}Se$	2040	8	
$^{124}Sn \rightarrow ^{124}Te$	2288	6	$[\xi 0.4] - \beta\beta^2 v$
$^{136}Xe \rightarrow ^{136}Ba$	2479	9	
130 Te $ ightarrow$ 130 Xe	2533	34	
$^{116}Cd \rightarrow ^{116}Sn$	2802	7	
$^{82}Se \rightarrow ^{82}Kr$	2995	9	
$^{100}Mo \rightarrow ^{100}Ru$	3034	10	
$^{96}Zr \rightarrow ^{96}Mo$	3350	3	
$^{150}Nd \rightarrow ^{150}Sm$	3667	6	
⁴⁸ Ca → ⁴⁸ Ti	4271	0.2	(T + T)/O

 $[T_{1/2}^{0\nu}(0^+ ->0^+)]^{-1} = G_{0\nu}(E_0,Z) |M_{0\nu}|^2 < m_{\nu} >^2 / m_e^2$

 $T_{1/2} \sim a(Mt/\Delta E \cdot B)^{1/2}$ a: abundance M: target mass

t: measuring time ΔE : energy resolution B: BG rate

Requirement : Low BG, Large target mass, High E-resolution

Decay branch of Thallium-208

The vertex reconstructed by scintillation make it within fiducial volume due to mis-fitting of gammas.

日本物理学会 第74回年次大会

Radiations	(Bq-s) ⁻¹
beta- 5	2.27×10 ⁻⁰³
beta- 8	3.09×10 ⁻⁰²
beta-10	6.30×10 ⁻⁰³
beta-11	2.45×10^{-01}
beta- 12	2.18×10^{-01}
beta- 13	4.87×10 ⁻⁰¹
ce-K, gamma 3	4.04×10 ⁻⁰³
gamma 4	6.31×10 ⁻⁰²
ce-K, gamma 4	2.84×10 ⁻⁰²
ce-L, gamma 4	4.87×10 ⁻⁰³
gamma 6	2.26×10 ⁻⁰¹
ce-K, gamma 6	1.97×10^{-02}
ce-L, gamma 6	3.32×10 ⁻⁰³
gamma 7	8.45×10 ⁻⁰¹
ce-K, gamma 7	1.28×10^{-02}
ce-L, gamma 7	3.51×10 ⁻⁰³
gamma 13	1.81×10^{-02}
gamma 15	1.24×10 ⁻⁰¹
ce-K, gamma 15	2.80×10 ⁻⁰³
gamma 19	3.97×10 ⁻⁰³
gamma 25	9.92×10 ⁻⁰¹

y(i)

Physical constants of Liquid Scintillator

Physical Constants of SGC Liquid Scintillators

Scintillator	Light Output % Anthracene¹	Wavelength of Maximum Emission, nm	Decay Constant, ns	H:C Ratio	Loading Element	Density	Flash Point °C		
BC-501A	78	425	3.2 ¹	1.212		0.87	26		
BC-505	80	425	2.5	1.331		0.877	48		
BC-509	20	425	3.1	.0035	F	1.61	10		
BC-517L	39	425	2	2.01		0.86	102		
BC-517H	52	425	2	1.89		0.86	81		
BC-517P	28	425	2.2	2.05		0.85	115		
BC-517S	66	425	2	1.70		0.87	53		
BC-519	60	425	4	1.73		0.87	63		
BC-521	60	425	4	1.31	Gd (to 1%)	0.89	44		
BC-523	65	425	3.7	1.74	Nat. 10B (5%)	0.916	-8		
BC-523A	65	425	3.7	1.67	Enr. ¹⁰ B (5%)	0.916	-8		
BC-525	55	425	3.8	1.56	Gd (to 1%)	0.88	91		
BC-531	59	425	3.5	1.63		0.87	93		
BC-533	51	425	3	1.96		0.80	65		
BC-537	61	425	2.8	0.99 (D:C)	²Н	0.954	-11		
* Anthracene light output = 40-50% of NaI(TI) ¹ Fast component; mean decay times of first 3 components = 3.16, 32.3 and 270 ns									

LY of NaI(TI) : 4 × 10⁴ photon/MeV

LY of BC505 : 1.2 × 10⁴ photon/MeV

Recovering the light yield

Measured at several conditions of PPO concentration

5wt.% PPO helps actually recovering the scintillation light yield.

 $48.7 \pm 7.1\%$ light yield to standard cocktail was obtained at 10wt.% concentration.

Property of Cherenkov light

- Refractive index of anisole : n=1.518
- Cherenkov angle is determined by cosθ= 1/n'β (Ee>0.7MeV) n'>n
- Assuming 1.65MeV electron, then β=0.972 and Cherenkov angel θ=47.3 degree are expected.
- Number of Cherenkov photon : 100 photon/MeV (400nm – 600nm)

$$\frac{dN}{dx} = 2\pi z^2 \alpha \sin^2 \theta_c \int_{\lambda_1}^{\lambda_2} \frac{d\lambda}{\lambda} = 475 z^2 \sin^2 \theta_c \text{photon/cm}$$

c.f. Light yield of Scintillation : ~12000photon/Me/
Cherenkov light = 1~2% of scintillation light

 $\frac{c}{n}t$

βct