ジルコニウム96を用いたニュートリノを 放出しない二重ベータ崩壊事象の探索 XII

日本物理学会 第73回年次大会 2018年3月25日

宮城教育大学教育学部 福田善之、安齊太亮、亀井雄斗*、 那仁格日楽*、小畑 旭* 東京大学宇宙線研究所 森山茂栄 福井大学工学部 小川 泉 東京理科大学理工学部 郡司天博、塚田 学、速水良平

⁹⁶Zrを用いたニュートリノを放出しないニ重ベータ崩壊事象探 <u>索実験-ZICOS</u>

⁹⁶Zr : 45kg (nat.) → 865kg(50% enrich)→1/20 BG $T_{1/2}^{0\nu} > 4 \times 10^{25}$ yrs → 2 × 10²⁶yrs → ~1 × 10²⁷yrs

<u>チェレンコフ光を用いた背景事象の除去(前回発表)</u>

日本物理学会第73回年次大会

事象のPMTヒットパターン

事象が除去可能

電子により観測されたパルス波形(前回発表)

Zr を溶解させた液体シンチレータ

アニソール(液シン)

今回の発表:アニソールで観測されたチェレン コフ光の波形とシンチレーション光の波形が 異なっているが、本当か?宇宙線ミューオンを 用いてチェレンコフ光のパルス波形を観測す ることを目的としている。
結果:チェレンコフ光の波形は立ち下がり時間 が短く、シンチレーション光とは異なった波形。 宇宙線ミューオンを用いたパルス波形観測

日本物理学会第73回年次大会

light yield (arbitary scale)

Zrを含まない標準液体シンチレータを用いた左右PMTの光量

左右PMT両方に光 量が観測されてい る青枠内の事象が 液体シンチレータ を通過した宇宙線 ミューオン。 この標準液シンで は、シンチレーショ ン光の光量はチェ レンコフ光の光量 の100倍程大き ことがわかった るので、シ ション光が主に観 測されている。

2018年3月25日

標準液体シンチレータにおける左右PMTの光量差

左右PMTのどちらも、鉛直入射 と斜め入射の宇宙線ミューオン による光量分布に統計的な差が 見られない。

観測される光量のほとんどがシ ンチレーション光であるため、等 方的に放射していることから、鉛 直・斜め入射のミューオンによる 光量差が見えづらくなっていると 考えられる。

シンチレーション光による左PMTの平均パルス波形

<u>電子によるシンチレーション光</u> の平均パルス波形との比較

観測された早いタイミングと遅い タイミングの平均パルス波形は、 それぞれ鉛直入射と斜め入射 ミューオンの波形が完全に一致 (タイミングの早い・遅いはFADCの時 間bin幅が2nsであるため、1ns遅れて 観測されるパルスが存在するため)

観測した平均パルス波形の立ち上がり時間は電子とミューオンでほぼ一致。
しかし立ち下がり時間はミューオンの方が電子より長い(を)をイミングで 9.3ns(µ):
7.4ns(e)遅いタイミングで
9.2ns(µ): 7.6ns (𝒫))→粒子の通過時間の違いが原因かも?

2018年3月25日

SC-37フィルターを介したアニソールによる左右PMTの光量

シンチレーション光の影響を少なくする ため、液シン溶媒のアニソールの周りを UVカットフィルターSC-37で包んで測定。 左右PMT両方に光量が観測されている 青枠内の事象が液体シンチレータを通 過した宇宙線ミューオンと思われる。 SC-37フィルターを介して観測している ため、シンチレーション光はほとんど観 測されないはず(だが、完全に0ではなく どれだけ存在するかは不明) 左PMTの光量が鉛直入射に比べ斜め 入射の方が光量が大きい(再現性は確 認済み)

チェレンコフ光による光量の増加が観測されている。

<u>鉛直・斜め入射ミューオンによる左右PMTの光量差</u>

差し引き前後の左PMTの平均パルス波形

斜め入射の光量(80~160)で作 成した平均パルス波形から鉛直 入射の光量(40~80)で作成した 平均パルス波形を差し引く。 差し引いた平均パルス波形の立 ち上がりはシンチレーション光と 同程度。立ち下がりは、早いタイミ ングでは5.4ns、遅いタイミングで は5.0nsで、シンチレーション光の 9.2nsより十分早い。

この平均パルス波形はチェレンコフ 光によるもののはずであり、つまり、 チェレンコフ光の波形はシンチレー ション光の波形と明らかに異なる。

電子で観測された事象のパルス波形との比較

電子で観測された事象 の波形と比較すると、シ ンチレーション光の平均 パルス波形よりもチェレ ンコフ光の平均パルス波 形の方が比較的良く一 致している 若干立ち下がり部分が 合わない(遅い)。

アニソールで観測された 立ち下がりの早いパルス 波形は、チェレンコフ光に よるものと考えられる。

<u>まとめ</u>

▶ 低シンチレーション環境で、宇宙線ミューオンを用い て、チェレンコフ光のパルス波形を直接観測した。 ▶ チェレンコフ光の方向性を確認した。 ▶ 観測されたチェレンコフ光の平均パルス波形は、シン チレーション光の波形と全く異なっていた。 ✓ シンチレーション光よりも短い立ち下がり波形 ✓ 電子により観測されたパルス波形とほぼ一致 ✓ 低エネルギー電子のシンチレーション光の波形からチェ レンコフ光の有無を同定するPSDが可能 ▶ 現在、Zr含有液体シンチレータで、宇宙線ミューオン 用いて波形観測を行っている。(PSDの開発) ▶ 高速のPMT/FADCを用いて、Zr含有LSの電子による/ ルス波形でチェレンコフ光を同定するPSDを開発する 計画。

BACKUP

日本物理学会第73回年次大会

2018年3月25日

Observed pulse in PhOMe

Charge and pulse shape for left PMT

日本物理学会第73回年次大会

2018年3月25日

Emission and absorption spectra for solvent and solute in standard cocktail

PPO absorbed most of emission lights from anisole.

Effectively the energy was transferred to the secondary scintillator.

2018年3月25日

Transparency of UV filter

Fall time of scintillation for electron

- Templates of FADC timing pulse shape for scintillation light were obtained for both case.
- Both decay time of scintillation light are same, and it was about 7ns.

Fall time of scintillation and Cherenkov

Pulse shape of **Cherenkov lights** has 5.4ns and 5.0ns of fall time for early and late timing, respectively. They are much shorter than the fall time of Scintillation (~9.3ns).

χ^2 distribution using Zr loaded LS

 χ^2 distribution looks different between vertical and inclined muons.

PSD should be useful for identification of Cherenkov signal.

Zr loaded liquid scintillator

2013~2015 2015 Measured on this August.

An energy resolution is obtained by $2.61 \pm 0.14\%$ at 3.35 MeV assuming <u>64% photo coverage</u> of the photomultiplier.

Observation of Cherenkov lights

Neutrino mass sensitivity of ZICOS experiment

Total mass : 180ton (fiducial volume : 113ton) Measurement time: 2years $10wt.\% Zr(iprac)_4 = 12.6ton includes 1.7ton of$ Zirconium = 45 kg of ⁹⁶Zr (natural abundance 2.5%)

 $T_{1/2}^{0\nu} > 4 \times 10^{25} y \leftarrow Not enough for <math>0\nu\beta\beta$ search

1) Zr enrichment 50% enrichment of 96 Zr (e.g. 57.3% for NEMO-3) 96 Zr will be 865kg then $T_{1/2}{}^{0v} > \sim 2 \times 10^{26}$ y

2) BG (²⁰⁸TI) reduction BG level < 1/20 × KL-Zen then $T_{1/2}^{0v}$ > ~1 × 10²⁷y Today's talk

Neutrinoless double beta decay

 $[T_{1/2}^{0\nu}(0^+ ->0^+)]^{-1} = G_{0\nu}(E_0,Z) |M_{0\nu}|^2 < m_{\nu} >^2 / m_e^2$

 $T_{1/2} \sim a(Mt/\Delta E \cdot B)^{1/2}$ a: abundance M: target mass

t: measuring time ΔE : energy resolution B: BG rate

Requirement : Low BG, Large target mass, High E-resolution

Decay branch of Thallium-208

The vertex reconstructed by scintillation make it within fiducial volume due to mis-fitting of gammas.

	y(i)		
Radiations	(Bq-s) ⁻¹		
beta- 5	2.27×10 ⁻⁰³		
beta- 8	3.09×10 ⁻⁰²		
beta- 10	6.30×10 ⁻⁰³		
beta- 11	2.45×10 ⁻⁰¹		
beta- 12	2.18×10^{-01}		
beta- 13	4.87×10 ⁻⁰¹		
ce-K, gamma 3	4.04×10 ⁻⁰³		
gamma 4	6.31×10 ⁻⁰²		
ce-K, gamma 4	2.84×10^{-02}		
ce-L, gamma 4	4.87×10 ⁻⁰³		
gamma 6	2.26×10^{-01}		
ce-K, gamma 6	1.97×10^{-02}		
ce-L, gamma 6	3.32×10 ⁻⁰³		
gamma 7	8.45×10 ⁻⁰¹		
ce-K, gamma 7	1.28×10^{-02}		
ce-L, gamma 7	3.51×10 ⁻⁰³		
gamma 13	1.81×10^{-02}		
gamma 15	1.24×10 ⁻⁰¹		
ce-K, gamma 15	2.80×10^{-03}		
gamma 19	3.97×10 ⁻⁰³		
gamma 25	9.92×10 ⁻⁰¹		

Physical constants of Liquid Scintillator

Physical Constants of SGC Liquid Scintillators

Scintillator	Light Output % Anthracene ¹	Wavelength of Maximum Emission, nm	Decay Constant, ns	H:C Ratio	Loading Element	Density	Flash Point °C	
BC-501A	78	425	3.2 ¹	1.212		0.87	26	
BC-505	80	425	2.5	1.331		0.877	48	
BC-509	20	425	3.1	.0035	F	1.61	10	
BC-517L	39	425	2	2.01		0.86	102	
BC-517H	52	425	2	1.89		0.86	81	
BC-517P	28	425	2.2	2.05		0.85	115	
BC-517S	66	425	2	1.70		0.87	53	
BC-519	60	425	4	1.73		0.87	63	
BC-521	60	425	4	1.31	Gd (to 1%)	0.89	44	
BC-523	65	425	3.7	1.74	Nat. ¹⁰ B (5%)	0.916	-8	
BC-523A	65	425	3.7	1.67	Enr. ¹⁰ B (5%)	0.916	-8	
BC-525	55	425	3.8	1.56	Gd (to 1%)	0.88	91	
BC-531	59	425	3.5	1.63		0.87	93	
BC-533	51	425	3	1.96		0.80	65	
BC-537	61	425	2.8	0.99 (D:C)	² H	0.954	-11	
* Anthracene light output = 40-50% of NaI(TI) ¹ Fast component; mean decay times of first 3 components = 3.16, 32.3 and 270 ns								

LY of NaI(TI) : 4×10^4 photon/MeV

LY of BC505 : 1.2 × 10⁴ photon/MeV

Property of Cherenkov light

- Refractive index of anisole : n=1.518
- Cherenkov angle is determined by cosθ= 1/n'β (Ee>0.7MeV) n'>n
- Assuming 1.65MeV electron, then β=0.972 and Cherenkov angel θ=47.3 degree are expected.
- Number of Cherenkov photon : 100 photon/MeV (400nm – 600nm)

$$\frac{dN}{dx} = 2\pi z^2 \alpha \sin^2 \theta_c \int_{\lambda_1}^{\lambda_2} \frac{d\lambda}{\lambda} = 475 z^2 \sin^2 \theta_c \text{photon/cm}$$

c.f. Light yield of Scintillation : ~12000photon/MeX
Cherenkov light = 1~2% of scintillation light

 $\frac{c}{n}$ +

βct