ジルコニウム96を用いたニュートリノを 放出しない二重ベータ崩壊事象の探索 X

Supported by Grant-in-Aid for Scientific Research on Innovative Areas No.24104501 and No.26105502

日本物理学会 2016年秋季大会 2016年9月23日

宮城教育大学教育学部 福田善之、亀井雄斗、那仁格日楽*、 小畑 旭* 東京大学宇宙線研究所 森山茂栄 福井大学工学部 小川 泉 東京理科大学理工学部 郡司天博、塚田 学、速水良平 ZICOS- Zirconium Complex in Organic Liquid Scintillator for neutrinoless double beta decay

Liquid Scintillator:

- (1) 10 wt.% Zr(iprac)₄ loaded in anisole
- (2) 3.5% at 3.35MeV of energy resolution with 40% photo coverage and long attenuation length (> 6m) was obtained.

Pure water surrounding inner detector in order to veto muons and external backgrounds.

Inner detector with 40%~60% photo coverage 20" HPD PMT including 1.7ton Zirconium loaded 113 tons LS in fiducial volume. (Total vol. : 180 tons)

Backgrounds around Q-value Measured by KamLAND-Zen

Main backgrounds

	Period	-1	Period-2	
	(270.7 d	(263.8 days)		
Observed events	22		11	
Background	Estimated	Best-fit	Estimated	Best-fit
136 Xe $2\nu\beta\beta$		5.48		5.29
	Residua	l radioactivity in Xe-LS		
²¹⁴ Bi (²³⁸ U series)	0.23 ± 0.04	0.25	0.028 ± 0.005	0.03
²⁰⁸ Tl (²³² Th series)		0.001		0.001
^{110m} Ag		8.5		0.0
e	Externa	al (Radioactivity in IB)		
²¹⁴ Bi (²³⁸ U series)		2.56		2.45
²⁰⁸ Tl (²³² Th series)		0.02		0.03
^{110m} Ag		0.003		0.002
e	St	pallation products		
¹⁰ C	2.7 ± 0.7	3.3	2.6 ± 0.7	2.8
⁶ He	0.07 ± 0.18	0.08	0.07 ± 0.18	0.08
¹² B	0.15 ± 0.04	0.16	0.14 ± 0.04	0.15
¹³⁷ Xe	0.5 ± 0.2	0.5	0.5 ± 0.2	0.4

Phys.Rev.Lett. 117 (2016) 082503

Need additional technique other than the energy spectral shape obtained by scintillation lights in order to reduce remaining backgrounds.

Decay mode

²⁰⁸TI : β and 2.6MeV γ s ²¹⁴Bi : β and multi γ s (609keV,1.12MeV)

Multiple events

- β and gammas (2.6MeV + etc) for ²⁰⁸Tl
- β and complicated gammas, and α for ²¹⁴Bi
- Mis-reconstruction and mis-identification
 - Reconstructed as one event even if multiple events
 - Caused contamination in fiducial volume

How to distinguish ²⁰⁸TI and DBD

Reconstructed vertex by scintillation light

 $0\nu\beta\beta$ event

β decay

2.6MeV γ

Reconstructed vertex by Cherenkov light Balloon or surface of detector

Simulation of ²⁰⁸TI decay

1) E: 3.0-3.7MeV 17925 events Fiducial volume 2) 628 events 3) Multi events 263 events 3) Closer events (d≦10cm) 35 events

1/20 BG reduction could be achieved.

Light yield of Cherenkov lights

Multiple scattering

Even though multiple scattering of electrons, Cherenkov light looks have some clusters in the directional distribution.

9

Angular dependence

Data indicated same angular dependence as MC simulation of Cherenkov lights with EGS5.

Comparison between MC and Data

EGS5 based MC almost reproduced the angular dependence of data.

Cherenkov lights emitted by ~1MeV electron really have a directionality.

Design of ZICOS detector

Detector :

1) 180tons LS : 10 wt.% Zr(iprac)₄ with **PPO/POPOP** in anisole Need 500 of 20" HPD with high QE ~0.4 and Tres (~1ns @ 2pe) = 64% coverage Expected performance : 1) Energy resolution ~2.8%@3.35MeV 2) $T_{1/2}(0\nu\beta\beta) > 10^{26}$ years, if both 1/20 BG reduction and 50% ⁹⁶Zr enrichment could be achieved.

Average angle distribution

Average angle with respect to averaged direction for single electron seems to have a peak at 48 degree which is almost same as Cherenkov angle.

lit pattern of DBD (opposite and half E)

400

200

-200

-400

400

200

-200

400

400

200

-200

-400

400

133.33

-133.33

-400

-400

400

133.33

-133.33

-400

-400

400

133.33

-133.33

-400

-400

-400

-400

日本物理学会 2016年秋季大会

2016年9月23日

90

<u>Hit pattern of ²⁰⁸TI (2.6MeVy+ β +y)</u>

Hit pattern could be used for BG reduction.

average angle with respect to average direction events/2degree 160140----- DBD 208**T** 120Number of vertex located within fiducial volume 10080 60 40202080 30 4050607090 average angle [degree]

Multi events from ²⁰⁸TL tend to have a smaller angle than DBD or single electron, even vertex obtained by scintillation.

Reconstructed vertex resolution

HPD should have better QE ~0.4 and timing resolution ~1ns @ 2pe than HK HPD in order to reconstruct the vertex position with σ ~10cm.

Could reconstruct the vertex position using even only hit pattern however need more smart method to get better resolution.

日本物理学会 2016年秋季大会

2016年9月23日

<u>Summary</u>

- Further 1/20 reduction of ²⁰⁸Tl (and ²¹⁴Bi) than KLZ could be realized by identifying as multi events.
- Simulated Cherenkov lights with EGS5 and could reproduce the angular dependence which is seen by data.
- Conceptual design for ZICOS detector with 20" HPD with 64% photo coverage was presented.
- Need to develop HPD with higher QE (~40%) and better timing resolution (~1ns @ 2pe) in order to obtain vertex resolution σ~10cm.
- Need smart methods both to recognize multi events whether DBD or BG and to get a vertex position using hit pattern.

17

BACKUP

日本物理学会 2016年秋季大会

2016年9月23日

18

Backgrounds around 3.35MeV

²¹⁴Bi contaminates within 1m inner volume, but most of events could be removed by Bi-Po tagging. Also ²¹⁴Bi is not serious BG in terms of signal region for ⁹⁶Zr

I.Shimizu@Neutrino2014

 $0\nu\beta\beta$ signal region for ⁹⁶Zr

Most serious BG is ²⁰⁸Tl for ⁹⁶Zr

Hit pattern of Cherenkov lights

Simulated by EGS5 (kinetic energy 1.65MeV)

Electron kinetic energy spectrum

For calculation of $2\nu\beta\beta$,

 $\frac{\mathrm{d}\omega}{\mathrm{d}k_1\mathrm{d}k_2\mathrm{d}\cos\theta} \sim \mathcal{F}(Z,\varepsilon_1)\mathcal{F}(Z,\varepsilon_2)k_1^2k_2^2(W_0-\varepsilon_1-\varepsilon_2)^5(1-\beta_1\beta_2\cos\theta)$

k_i, electron momenta $\varepsilon_i = sqrt(k_i^2 + m_e^2)$: electron energy $W_0 = Q + 2m_e$: total release energy Q : Q value m_e: electron mass θ : opening angle \mathcal{F} : Fermi func. ε_i can generate independently within energy conservation. For calculation of $0\nu\beta\beta$, Same calculation but ε_i can only generate with $\varepsilon_1 + \varepsilon_2 = W_{0^4}$

日本物理学会 2016年秋季大会

2016年9月23日

Basic distribution of DBD MC sample

Double beta decay MC sample property

Two electrons were generated at same vertex position with opposite direction. Each energy is 1.65MeV. **Cherenkov** photons were generated at each EGS ausgab subroutine with 200 photons/MeV QE and time resolution were assumed by 0.4 and 1ns@2pe for HPD.

Emission and absorption spectra for solvent and solute in standard cocktail

PPO absorbed most of emission lights from anisole.

Effectively the energy was transferred to the secondary scintillator.

2016年9月23日

ATTENUATION LENGTH OF ANISOLE

Attenuation length of scintillation light from POPOP (~450nm) was obtained as ~6m.

No problem for radius of ZICOS detector.

How to separate Cherenkov and scintillation

Separation of scintillation and Cherenkov lights in PMT signal using waveform of FADC.

Cherenkov has a faster peak than scintillation.

Natural radiative U/Th decay chain

日本物理学会 2016年秋季大会

26

Electromagnetic isotope separation

Schematic of a Calutron

Backscattering method

Cross section of gamma in anisole

日本物理学会 2016年秋季大会

Most of few MeV range γ s interact with anisole via Compton scattering.

At least, one event could have Cherenkov hits.

2016年9月23日

Event direction and average PMT direction

10

20

No relation between event direction and averaged PMT direction was found.

Clustered PMTs should be made by longest track within multiple scattering.

日本物理学会 2016年秋季大会

difference y-axis [cm]

0

10

20

-10

-20

Light yield of scintillation in anisole

Relative scintillation light yield of anisole is 9.8% to standard cocktail (due to difference of quantum efficiency of PMT)

日本物理学会 2016年秋季大会

2016年9月23日

Thallium-208 radiation branch

	y(i)
Radiations	(Bq-s) ⁻¹
beta- 5	2.27×10 ⁻⁰³
beta- 8	3.09×10 ⁻⁰²
beta- 10	6.30×10 ⁻⁰³
beta- 11	2.45×10 ⁻⁰¹
beta- 12	2.18×10^{-01}
beta- 13	4.87×10 ⁻⁰¹
ce-K, gamma 3	4.04×10 ⁻⁰³
gamma 4	6.31×10 ⁻⁰²
ce-K, gamma 4	2.84×10 ⁻⁰²
ce-L, gamma 4	4.87×10 ⁻⁰³
gamma 6	2.26×10 ⁻⁰¹
ce-K, gamma 6	1.97×10 ⁻⁰²
ce-L, gamma 6	3.32×10 ⁻⁰³
gamma 7	8.45×10^{-01}
ce-K, gamma 7	1.28×10^{-02}
ce-L, gamma 7	3.51×10 ⁻⁰³
gamma 13	1.81×10^{-02}
gamma 15	1.24×10^{-01}
ce-K, gamma 15	2.80×10 ⁻⁰³
gamma 19	3.97×10 ⁻⁰³
gamma 25	9.92×10 ⁻⁰¹
2016	年9月23日

日本物理学会 2016年秋季大会

32

LIGHT YIELD COMPARISON BETWEEN BC505 AND STANDARD COCKTAIL

Light yield of BC505 and our standard cocktail (100mg PPO and 10mg POPOP solved in 20mL anisole) is almost same quality.

ENERGY SPECTRA FOR SEVERAL CONCENTRATION OF ZR(IPRAC)4

Peak values decreased as a function of the concentration of $Zr(iprac)_4$.

Energy resolutions are also getting worth as a function of the concentration of $Zr(iprac)_4$.

Physical constants of Liquid Scintillator

Physical Constants of SGC Liquid Scintillators

Scintillator	Light Output % Anthracene¹	Wavelength of Maximum Emission, nm	Decay Constant, ns	H:C Ratio	Loading Element	Density	Flash Point °C
BC-501A	78	425	3.2 ¹	1.212		0.87	26
BC-505	80	425	2.5	1.331		0.877	48
BC-509	20	425	3.1	.0035	F	1.61	10
BC-517L	39	425	2	2.01		0.86	102
BC-517H	52	425	2	1.89		0.86	81
BC-517P	28	425	2.2	2.05		0.85	115
BC-517S	66	425	2	1.70		0.87	53
BC-519	60	425	4	1.73		0.87	63
BC-521	60	425	4	1.31	Gd <mark>(</mark> to 1%)	0.89	44
BC-523	65	425	3.7	1.74	Nat. ¹⁰ B (5%)	0.916	-8
BC-523A	65	425	3.7	1.67	Enr. ¹⁰ B (5%)	0.916	-8
BC-525	55	425	3.8	1.56	Gd (to 1%)	0.88	91
BC-531	59	425	3.5	1.63		0.87	93
BC-533	51	425	3	1.96		0.80	65
BC-537	61	425	2.8	0.99 (D:C)	²Н	0.954	-11
* Anthracene light output = 40-50% of NaI(TI) ¹ Fast component; mean decay times of first 3 components = 3.16, 32.3 and 270 ns					70 ns		

LY of NaI(TI) : 4×10^4 photon/MeV

LY of BC505 : 1.2 × 10⁴ photon/MeV

RECOVERY FOR ABILITY OF LIGHT YIELD AND ENERGY RESOLUTION

PPO helps recovering the light yield and the energy resolution.

Confirmed our assumption and obtained optimized real cocktail (PPO 5wt.% POPOP 0.5wt.%)

UV sharp cut filter (Fuji films)

Photo coverage

Generated point in the vial

Light yield and energy resolution

Zr(ipcac)₄ and Zr(etac)₄ have almost same performance, but LY and Eres depend strongly on concemtration.

PURIFICATION OF ANISOLE

Attenuation length of light from POPOP was obtained as ~6m for current liquid scintillator.

Attenuation length will be recovered ~15m by same purification method as RENO with Al₂O_{3.} (Ref: H.Grubbs et al., Org.Mat. 1996 15, 1518-1520)

Future 0vßß experiments

S. Dell'Oro, S. Marcocci, F. Vissani, Phys. Rev. D90, 033005 (2014)

~tons of target and ~zero BG detector will be necessary for next generation $0\nu\beta\beta$ experiment.

Neutrinoless double beta decay

$etaeta$ emitters with $oldsymbol{Q}_{etaeta}$ >2 Mev				
Transition	Q_{etaeta} (keV)	Abundance (%) ($^{232}Th = 100$)		
$^{110}Pd \rightarrow ^{110}Cd$	2013	12		
$^{76}Ge \rightarrow ^{76}Se$	2040	8		
$^{124}Sn \rightarrow ^{124}Te$	2288	6		
$^{136}Xe ightarrow ^{136}Ba$	2479	9		
130 Te $ ightarrow$ 130 Xe	2533	34		
$^{116}Cd \rightarrow ^{116}Sn$	2802	7		
$^{82}Se \rightarrow ^{82}Kr$	2995	9		
$^{100}Mo \rightarrow ^{100}Ru$	3034	10		
$^{96}Zr \rightarrow ^{96}Mo$	3350	3		
$^{150}Nd \rightarrow ^{150}Sm$	3667	6		
$^{48}Ca \rightarrow ^{48}Ti$	4271	0.2		

$$[T_{1/2}^{0\nu}(0^+ -> 0^+)]^{-1} = G_{0\nu}(E_0,Z) |M_{0\nu}|^2 < m_{\nu} >^2 / m_e^2$$

$$T_{1/2}^{-\alpha} (Mt/\Delta E \cdot B)^{1/2} \qquad a: abundance \qquad N$$

M: target mass a: abundance

t: measuring time ΔE : energy resolution B: BG rate

Requirement : Low BG, Large target mass, High energy resolution

Neutrino mass sensitivity of ZICOS experiment

Results from NEMO-3 (${}^{96}Zr$) : $T_{1/2}^{0v} > 9.2 \times 10^{21}y$ < $m_v > 7.2 - 10.8 \text{ eV} (g_A = 1.25, g_{pp} = 1.11, QRPA)$

(Ref: M.B.Kauer Doctor thesis for UCL(2010))

Assuming same energy resolution, BG rate and measurement time as KamLAND-Zen $(T_{1/2}^{0v} > 2.6 \times 10^{25} y)$ (Ref: I.Shimizu arXiv:1409.0077 (2014))

Mass : 113 ton 10wt.% $Zr(iprac)_4 = 12.6ton$ includes 1.7ton of Zirconium = 45 kg of ${}^{96}Zr$ (natural abundance 2.6%) (64kg of ${}^{136}Xe = 0.2 \times KL-Zen$)

 $T_{1/2}^{0\nu} > 1.2 \times 10^{25}y \leftarrow \text{Not enough for } 0\nu\beta\beta \text{ search}$

Neutrino mass sensitivity of ZICOS experiment

1) Zr enrichment

58.5% enrichment of 96 Zr (e.g. 57.3% for NEMO-3) then 96 Zr will be 1.0 ton (4.4 times 136 Xe 320kg)

 $T_{1/2}^{0v} > 5 \times 10^{25}$ y; $< m_v > < 0.09 - 0.15 \text{ eV}$ (QRPA)

Laser

2) Lowering BG (²⁰⁸Tl /²¹⁴Bi) i.e. < 1/20 × KL-Zen (~1.0events/ton/year)

 $T_{1/2}^{0v} > 5 \times 10^{25} y$

See this talk

Development of Zr loaded LS Zr(CH₃COCHCOOCH(CH₃)₂)₄ : Zr(iprac)₄ tetrakis (isopropyl acetoacetate) zirconium mw : 663.87

Solid crystal or powder

Absorbance spectra for Zr(iprac)₄

Absorption peaks of Zr(iprac)₄ was found around at 278nm. However, overlapped region with emission of anisole was existed.

 $Zr(iprac)_4$ works as a quencher for the liquid scintillator system.

Solubility of Zr(iprac)₄ for anisole

Solubility > 31.2 wt.%

Zr(iprac)₄ 2242mg, PPO 999mg and POPOP 10mg solved in 20mL Anisole

NO.

1167

> 70g/L of Zirconium could be solved in anisole.

日本物理学会 2016年秋季大会

2016年9月23日

Light yield quenching by Zr(iprac)₄

Light yield =
$$L_0 \times \frac{\sigma_1 N_{ppo}}{\sigma_1 N_{ppo} + \sigma_2 N_{Zr}}$$

 $\begin{array}{l} L_{0}: Light yield of anisole \\ N_{ppo}: Number of PPO molecular in mole \\ N_{Zr}: Number Zr complex molecular in mole \\ \sigma_{1}: absorbance of PPO (mol^{-1}) \\ \sigma_{2}: absorbance of Zr complex (mol^{-1}) \end{array}$

PPO would help the recovering light yield.

Recovering the light yield

Measured at several conditions of PPO concentration

5wt.% PPO helps actually recovering the scintillation light yield.

 $48.7 \pm 7.1\%$ light yield to standard cocktail was obtained at 10wt.% concentration.

Recovering the energy resolution

Measured at several conditions of PPO concentration

5wt.% PPO helps again the energy resolution $35\% \rightarrow 13\%$. at 10wt.% of Zr(iprac)₄.

Achieved goal

Stability of liquid scintillator

Feb. 27,2015 Mar. 14, 2016

Keep transparent liquid and no precipitate is found.

Measurement of backgrounds from LS

Using subtracted # of events around 2.6MeV and 2.2MeV $^{214}Bi < 4.9x10^{-20}g/g$ $^{208}Tl < 2.7x10^{-22} g/g$ ($^{238}U < 6.4x10^{-6} g/g$) ($^{232}Th < 7.4x10^{-7} g/g$) (c.f. KL 10⁻¹⁸g/g)

Property of Cherenkov light

- Refractive index of anisole : n=1.518
- Cherenkov angle is determined by $\cos\theta = 1/n'\beta$ (Ee>0.7MeV) n'>n
- Assuming 1.65MeV electron, then β=0.972 and Cherenkov angel θ=47.3 degree are expected.
- Number of Cherenkov photon : 100 photon/MeV (400nm – 600nm)

$$\frac{dN}{dx} = 2\pi z^2 \alpha \sin^2 \theta_c \int_{\lambda_1}^{\lambda_2} \frac{d\lambda}{\lambda} = 475 z^2 \sin^2 \theta_c \text{photon/cm}$$

c.f. Light yield of Scintillation : ~12000photon/Me/
Cherenkov light = ~1% of scintillation light

 $\frac{c}{n}t$

βct

Simulation of ²⁰⁸TI decay

 E: 3.0-3.7MeV 1555 events
 fiducial volume 91 events
 Multi events 22 events
 Closer events 5events

1/20 BG reduction could be achieved