Supported by Grant-in-Aid for Scientific Research (C) 24540295 and Grant-in-Aid for Scientific Research on Innovative Areas 26105502

ジルコニウム96を用いたニュートリン 放出しない二重ベータ崩壊事象の探索

日本物理学会 第70回年次大会 2015年3月21日

宮城教育大学教育学部 福田 善之、那仁格日楽、小畑 旭* 東京大学宇宙線研究所 森山 茂栄 福井大学工学部 小川 泉 東京理科大学理工学部 郡司天博、塚田 学、速水良平

Neutrinoless double beta decay

$etaeta$ emitters with $oldsymbol{Q}_{etaeta}>$ 2 Mev				
Transition	Q_{etaeta} (keV)	Abundance (%) ($^{232}Th = 100$)		
$^{110}Pd \rightarrow ^{110}Cd$	2013	12		
$^{76}Ge \rightarrow ^{76}Se$	2040	8		
$^{124}Sn \rightarrow ^{124}Te$	2288	6		
$^{136}Xe \rightarrow ^{136}Ba$	2479	9		
130 Te $ ightarrow$ 130 Xe	2533	34		
$^{116}Cd \rightarrow ^{116}Sn$	2802	7		
$^{82}Se \rightarrow ^{82}Kr$	2995	9		
$^{100}Mo \rightarrow ^{100}Ru$	3034	10		
$^{96}Zr \rightarrow ^{96}Mo$	3350	3		
$^{150}Nd \rightarrow ^{150}Sm$	3667	6		
$^{48}Ca \rightarrow ^{48}Ti$	4271	0.2		

 $\begin{bmatrix} T_{1/2}^{0\nu}(0^+ -> 0^+) \end{bmatrix}^{-1} = G_{0\nu}(E_0, Z) | M_{0\nu} |^2 < m_{\nu} >^2 / m_e^2 \\ T_{1/2} \sim a(Mt/\Delta E \cdot B) \qquad a: abundance \qquad M: target mass \\ t: measuring time \ \Delta E: energy resolution \qquad B: BG rate \end{bmatrix}$

Requirement : Low BG, Large target mass, High energy resolution

Zirconium Complex in Organic Liquid Scintillator for neutrinoless double beta decay (ZICOS) experiment **PMT** with

Goals for development of LS : (1) > 10wt.% solubility (2) 3.5% at 3.35MeV of energy resolution, if ZICOS have PMTs with 40% photo coverage and long attenuation length (~15m)

> LS surrounding inner balloon to veto external BG

40% photo coverage

Nylor

balloon

10m

Zirconium loaded 113 tons LS

10m

日本物理学会 第70回年次大会

2015年3月21日

Zirconium Complex in Organic Liquid Scintillator for neutrinoless double beta decay (ZICOS) experiment PMT with

Goals for development of LS :
(1) > 10wt.% solubility
(2) 3.5% at 3.35MeV of energy resolution, if ZICOS have PMTs with 40% photo coverage and long attenuation length (~15m)

LS surrounding inner balloon to veto external BG

Zirconium loaded 113 tons LS

2015年3月21日

3m

13m

40% photo

coverage

inne

Zirconium β-keto ester complex

 $Zr(CH_{3}COCHCOOCH(CH_{3})_{2})_{4} Zr(CH_{3}COCHCOOCH_{2}CH_{3})_{4}$ = $Zr(iprac)_{4}$ = $Zr(etac)_{4}$ mw : 663.87 mw : 607.76

Synthesized by Prof. T.Gunji

Absorption wavelength could be shorten.

日本物理学会 第70回年次大会

2015年3月21日

Solubility of Zirconium β-keto ester complex for anisole Zr(iprac)₄: 31.2wt.% Zr(etac)₄: 32.7wt.%

> 70g/L of Zirconium could be solved in anisole

日本物理学会 第70回年次大会

2015年3月21日

<u>Absorbance spectra for zirconium</u> <u>β-keto ester complex</u>

Absorption peaks of Zr(iprac)₄ was found around at 278nm. Peak moved only 10nm.

Overlap region for the absorption spectrum of $Zr(iprac)_4$ became smaller than that of $Zr(acac)_{4.}$

Light yield calculated by quenching

Light yield =
$$L_0 \times \frac{\sigma_1 N_{ppo}}{\sigma_1 N_{ppo} + \sigma_2 N_{Zr}}$$

 L_0 : Light yield of anisole N_{ppo} : Number of PPO molecular in mole N_{Zr} : Number Zr complex molecular in mole σ_1 : absorbance of PPO (mol⁻¹) σ_2 : absorbance of Zr complex (mol⁻¹)

Light yield and energy resolution

Zr(ipcac)₄ and Zr(etac)₄ are almost same performance.

Light yield calculated by quenching

$$\label{eq:Light} \begin{array}{l} \text{Light yield} = L_0 \ \times \frac{\sigma_1 N_{\text{ppo}}}{\sigma_1 N_{\text{ppo}} + \sigma_2 N_{Zr}} \end{array}$$

 L_0 : Light yield of anisole N_{ppo} : Number of PPO molecular in mole N_{Zr} : Number Zr complex molecular in mole σ_1 : absorbance of PPO (mol⁻¹) σ_2 : absorbance of Zr complex (mol⁻¹)

N_{ppo} should help recovering the light yield.

Modification of light yield

Zr(iprac)₄ in several conditions of PPO concentration.

Light yield decreased as calculated formula. However, PPO helps actually the light yield recovering.

 $48.7 \pm 7.1\%$ light yield to standard cocktail was obtained at 10wt.% concentration.

Modification of energy resolution

Zr(iprac)₄ in several conditions of PPO concentration

PPO helps again the energy resolution at 10wt.% concentration to be $35\% \rightarrow 13\%$.

 $13.0 \pm 2.0\%$ $\sqrt{40\%/9\%*0.72*3.35MeV/1.03MeV}$ = 4.1 ± 0.6% at 3.35MeV Achieved our initial goal! Neutrino mass sensitivity of ZICOS experiment

Results from NEMO-3 : $T_{1/2}^{0v} > 9.2 \times 10^{21}$ y <m_v> 7.2 - 10.8 eV (g_A =1.25, g_{pp} =1.11,QRPA) (Ref: M.B.Kauer Doctor thesis for UCL(2010))

Assuming 3m radius, and same Eres, BG rate and mes.time as KamLAND-Zen $(T_{1/2}^{0v} > 1.9 \times 10^{25} y)$ (Ref: I.Shimizu arXiv:1409.0077 (2014)) Volume: 113ton 10wt.% Zr(iprac)₄ = 12.6ton includes 1.73ton of Zr includes 51.9kg of ⁹⁶Zr (0.23 times ¹³⁶Xe 320kg)

Sensitivity of ZICOS experiment : $T_{1/2}^{0v} > 4.4 \times 10^{24}$ y; $< m_v > < 0.3 - 0.5$ eV $(g_A=1.25, g_{pp}=1.11, QRPA)$

To reach for $< m_v > < 0.1 eV$

1) If a radius of balloon is 3m,

- 30wt.% $Zr(iprac)_4 = 156kg \text{ of } {}^{96}Zr$
- ⁹⁶Zr enriched to 10% 15% using Centrifuge

 $< m_v > < 0.09 - 0.11 \text{ eV}$

- 2) To reach for $< m_{y} > ~0.03 eV$
 - need 5tons of ⁹⁶Zr

10% - 15%

Need KamLAND balloon or SNO+ acrylic vessel

<u>SUMMARY</u>

- Liquid scintillator containing zirconium β-keto ester complex for ZICOS experiment was developed.
- The absorption peak of zirconium β-keto ester complex stayed at 268nm, but smaller overlap with emission of anisole than zirconium acetylacetone.
- Liquid scintillator with 10 wt.% concentration of Zr(iprac)₄ has 48.7±7.1% for light yield to BC505 and 4.7±0.8% at 2.5MeV (assuming 40% photo coverage and 15m attenuation length) for energy resolution, so that we have really achieved our initial goal !

Sensitivity of ZICOS experiment: $T_{1/2}^{0v} > 4.4 \times 10^{24}$, $m_v > < 0.3 - 0.5eV$ ($g_A = 1.25, g_{pp} = 1.11, QRPA$) assuming BG rate of KamLAND-Zen.

<u>Synthesis of Tetrakis(diethyl malonato)</u> <u>Zirconium</u>

 $Zr(CH_3CH_2OCOCHCOOCH_2CH_3)_4$ = $Zr(deml)_4$ mw : 727.87

Yellow crystal

<u>Absorbance of Tetrakis (diethyl</u> <u>malonato) Zirconium</u>

日本物理学会 第70回年次大会

2015年3月21日

Light yield and energy resolution of Zr(deml)₄

Zr(deml)₄ has a little better performance than Zr(iprac)₄.

日本物理学会 第70回年次大会

2015年3月21日

BACKUP

日本物理学会 第70回年次大会

2015年3月21日

19

Emission and absorption spectra for solvent and solute in standard cocktail

PPO absorbed most of emission lights from anisole.

Effectively the energy was transferred to the secondary scintillator.

ATTENUATION LENGTH OF ANISOLE

Attenuation length of light from POPOP was obtained as ~6m for current liquid scintillator.

Attenuation length will be recovered ~15m by same purification method as RENO with Al₂O_{3.} (Ref: H.Grubbs et al., Org.Mat. 1996 15, 1518-1520)

ATTENUATION LENGTH OF ANISOLE

Attenuation length of light from POPOP was obtained as ~6m. It is almost equivalent with the detector size.

日本物理学会 第69回年次大会

<u>Absorbance spectra in hexane / dietyl</u> <u>ether</u>

~280nm peak disappeared and a precipitate appeared.

Most of solved Zr atom was found in the precipitate, and no Zr atom in the residual solvent by ICP - Atomic Emission Spectrometry.

<u>Absorbance spectra in acetonitrile / 2-</u> <u>propanol</u>

They are stable and quite transparent.

Solved Zr atoms were found in every region. \sim ~280nm peak should be due to Zr(iprac)₄ and Zr(etac)₄.

Results from ICP Atomic Emission Spectrometry

搬入日	試料名		ジルコニウム濃度 (mg/L)
平成26年11月28日	1	ジエチルエーテル Zr(iprac) ₄ 8.3mg/20mL 上澄み液 2014.11.11 No.1075	0.50
	2	2014.10.17 Zr(iprac) ₄ 5.9mg ジエチルエーテル No.980	150
平成26年12月10日	3	プロパノール Zr(iprac) ₄ (1.5/20) 上5mL	5.6
	4	2-プロパノール(20mL)+Zr(iprac) ₄ (1.5mg) 2013.11.22 No.497	18
	5	2-プロパノール+Zr(iprac)4 吸収1回目測定 2013.11.22 No.497から No.525	1.1
	6	アニソール Zr(iprac) ₄ 2.0/20mL No.673(上)5mL	2.6
		· · · · · · · · · · · · · · · · · · ·	

LIGHT YIELD COMPARISON BETWEEN BC505 AND STANDARD COCKTAIL

Light yield of BC505 and our standard cocktail (100mg PPO and 10mg POPOP solved in 20mL anisole) is almost same quality.

ENERGY SPECTRA FOR SEVERAL CONCENTRATION OF ZR(IPRAC)4

Peak values decreased as a function of the concentration of $Zr(iprac)_4$.

Energy resolutions are also getting worth as a function of the concentration of $Zr(iprac)_4$.

ENERGY SPECTRA FOR SEVERAL CONCENTRATION OF ZR(ETAC)4

Peak values decreased as a function of the concentration of $Zr(etac)_4$.

Energy resolutions are also getting worth as a function of the concentration of $Zr(etac)_4$.

RECOVERY FOR ABILITY OF LIGHT YIELD AND ENERGY RESOLUTION

PPO helps recovering the light yield and the energy resolution.

Confirmed our assumption and obtained optimized real cocktail (PPO 5wt.% POPOP 0.5wt.%)

ACK SCATTERING METHO

Photo coverage

日本物理学会 第70回年次大会

Generated point in the vial

Photon attenuation in ZICOS detector

Assuming 3m radius balloon and 5m radius of tank with 15m attenuation length of anisole, the photon attenuation will be 0.72 in average.

Solubility of PPO in anisole with 10wt.% concentration of Zr(iprac)₄

205.5mg 205.5mg+2.0g

= 9.3 wt.%

Maybe solved in 20 wt.% of Zr(iprac)₄

日本物理学会 第70回年次大会

2015年3月21日

FOR FUTURE EXPERIMENTS

~tons of target will be necessary for next generation detector