Supported by Grant-in-Aid for Scientific Research (C) 24540295 and Grant-in-Aid for Scientific Research on Innovative Areas 24104501

ジルコニウム96を用いたニュートリノ を放出しない2重ベータ崩壊事象の探 索実験II

日本物理学会 第68回年次大会 2013年3月29日

福田善之、ナリンゲルラ、中川貴仁 (宮城教育大学) 森山茂栄(東京大学宇宙線研究所) 小川泉(福井大学工学部)

Neutrinoless double beta decay

$[T_{1/2}^{0\nu}(0^+ ->0^+)]^{-1} = G_{0\nu}(E_0,Z)|M_{0\nu}|^2 < m_{\nu}>^2$ T_{1/2}~a(Mt/\DeltaEB) a: abundance M: mass t: meas.time \DeltaE: energy res. B: BG rate Requirement : Low BG, Large target mass, High energy resolution

Studied isotopes

Piquemal@v2012

For future experiments

http://kds.kek.jp/getFile.py/access?contribId=37&sessionId=16&resId=2&materialId=slides&confId=9151

~tons of target will be needed for next generation detector

2013年3月29日

Detector design for Zr in 100ton LS Zirconium Complex in Organic liquid Scintillator (ZICOS) Assuming 10w.t.% solubility 3m

10m

Zirconium β-diketon complex

 Zirconium(IV) acetylacetonate (Zr(acac)₄)

Advantage good solubility (over 10w.t.%) in Anisole (PhOMe) □ Stable and cheep Commercial product Disadvantage Low scintillation light yield

Molecular weight: 487.66

Scontillation Light yield (⁶⁰Co) with respect to concentration of Zr(acac)₄

concentration of Zr(acac) ₄	Observed channel	Expected channel
0 mg	3850	3850
50mg (1.03X10 ⁻⁴)	3175	3138
100mg (2.05X10 ⁻⁴)	2800	2651
200mg (4.10X10 ⁻⁴)	2000	2018
300mg (6.15X10 ⁻⁴)	1600	1613
500mg (1.03X10 ⁻³)	900	1178

PPO 100mg : 4.52X10⁻⁴ mol

2013年3月29日

Improve scintillation light yield

Move absorption peak How to do it? to shorter wavelength

substituent groups

Courtesy of Prof. Yoshiyuki Kowada (Hyogo University of Education)

2013年3月29日

Absorbance peak for several substituent groups

 Measured absorbance peaks for several substituent groups

Expected absorbance peak for several substituent groups

Zr β-keto ester complex Zr(iprac)₄+(iprac)_{1.5} state: powder

Zr(etac)₄ state : dry solid

Synthesized by Prof. Takahiro Gunji (Tokyo University of Science)

Solubility > 10 w.t.% for anisole

2013年3月29日

Absorbance spectra (Solvent effect)

Solution : Hexane

....................... £ 0.25 -0.5 Zr(acac) absorbace spectra--0.75 in hexane 550 250 300 350 400 450 500 wavelenoth Absorbance of Zrtacac)4 in hexane absorbanc C -1 Zr(iprac), absorbace spectra 1.5 in hexane 250 300 350 490 450 530 550 wavelength Absorbance of Zr((prac)5.5 in hexane Sec.25 -û. 5 Zr(etac), absorbace spectra -0.75 in hexane 250 3.00 350 430 450 500 550 - 600 wavelength Absorbance of Zrietacl4 in hexane

Solution : acetonitrile

Absorption peak moved to shorter wavelength

2013年3月29日

Absorbance in another solvent

Solution : Diethyl Ether

Solvent effect could depend on the polarity (dielectric const.)

 Acetonitrile : 37.5
 Hexane : 1.89
 Anisole : 4.3

 Need solution which has same polarity as anisole
 Diethyl ether : 4.33

Still absorption peak remains around 270nm

Light yield of scintillation

Zr(iprac)_{5.5} in anisole

Zr(etac)₄ in anisole

Same quenting as Zr(acac)₄ was observed

2013年3月29日

Requirement of scintillator solvent

Low polarity (dielectric const.)

 No absorption ~270nm

 Aromatic compounds

 luminescence >270nm

 Safety for human body and environment
 Usual solvent for L.S.

Toluene / Xylene

Solvent	mp	bp	D_{4}^{20}	<i>n</i> _D ²⁰	3	R _D	μ
Acetic acid	17	118	1.049	1.3716	6.15	12.9	1.68
Acetone	-95	56	0.788	1.3587	20.7	16.2	2.85
Academitalle	44	00	0.700	1.0444	07.5	44.4	0.45
Anisole	-3	154	0.994	1.517	4.33	33	1.38
Benzene	5	80	0.879	1.5011	2.27	26.2	0
Bromobenzene	-31	156	1.495	1.558	5.17	33.7	1.55
Carbon disulfide	-112	46	1.274	1.6295	2.6	21.3	0
Carbon tetrachloride	-23	77	1.594	1.4601	2.24	25.8	0
Chlorobenzene	-46	132	1.106	1.5248	5.62	31.2	1.54
Chloroform	-64	61	1.489	1.4458	4.81	21	1.15
Cyclohexane	6	81	0.778	1.4262	2.02	27.7	0
Dibutyl ether	-98	142	0.769	1.3992	3.1	40.8	1.18
o -Dichlorobenzene	-17	181	1.306	1.5514	9.93	35.9	2.27
1,2-Dichloroethane	-36	84	1.253	1.4448	10.36	21	1.86
Dichloromethane	-95	40	1.326	1.4241	8.93	16	1.55
Diethylamine	-50	56	0.707	1.3864	3.6	24.3	0.92
Diethyl ether	-117	35	0.713	1.3524	4.33	22.1	1.3
1,2-Dimethoxyethane	-68	85	0.863	1.3796	7.2	24.1	1.71
N.N -Dimethylacetamide	-20	166	0.937	1.4384	37.8	24.2	3.72
N,N -Dimethylformamide	-60	152	0.945	1.4305	36.7	19.9	3.86
Dimethyl sulfoxide	19	189	1.096	1.4783	46.7	20.1	3.9
1,4-Dioxane	12	101	1.034	1.4224	2.25	21.6	0.45
Ethanol	-114	78	0.789	1.3614	24.5	12.8	1.69
Ethyl acetate	-84	77	0.901	1.3724	6.02	22.3	1.88
Ethyl benzoate	-35	213	1.05	1.5052	6.02	42.5	2
Formamide	3	211	1.133	1.4475	111	10.6	3.37
Hexamethylphosphoramide	7	235	1.027	1.4588	30	47.7	5.54
Isopropyl alcohol	-90	82	0.786	1.3772	17.9	17.5	1.66
Methanol	-98	65	0.791	1.3284	32.7	8.2	1.7
2-Methyl-2-propanol	26	82	0.786	1.3877	10.9	22.2	1.66
Nitrobenzene	6	211	1.204	1.5562	34.82	32.7	4.02
Nitromethane	-28	101	1.137	1.3817	35.87	12.5	3.54
Pyridine	-42	115	0.983	1.5102	12.4	24.1	2.37
Totrobudrofuron	100	66	0 000	1 4072	7 50	10.0	1 75
Toluene	-95	111	0.867	1.4969	2.38	31.1	0.43
Irichloroethylene	-86	87	1.465	1.4/6/	3.4	25.5	0.81
Triethylamine	-115	90	0.726	1.401	2.42	33.1	0.87
Trifluoroacetic acid	-15	72	1.489	1.285	8.55	13.7	2.26
2,2,2-Trifluoroethanol	-44	77	1.384	1.291	8.55	12.4	2.52
Water	0	100	0.998	1 333	80.1	37	1 82
-Xvlene	-25	144	0.88	1 5054	2 57	35.8	0.62

Zirconium complex with luminescence

Zr-ODZ complex

m.w. = 1040.18

Photo luminescence

Solvent : Acetonitrile Concentration : 3.0 × 10⁻⁵ mol/L

Emission and absorption of Zr(ODZ)₄

Emission wavelength : 430nm

PMT sensitive Absorption wavelength: 270nm and 320nm

different from excitation W.L. Solvent : PhCN (Benzonitrile) Solubility : ~5w.t.%

Response for y-irradiation

 Most of emission light from PhCN was not used for the emission of Zr(ODZ)₄.
 Secondary excitation of ~340nm was used for the emission of Zr(ODZ)₄.
 Estimated Quantum yield was obtained ~30% at first excitation of ~240nm.

Need another solvent which has shorter emission wavelength than PhCN.

2013年3月29日

Summary

- High solubility of Zr β-keto ester in Anisole
 (>~10w.t.%) for ZICOS detector was achieved.
- Confirmed absorption peak moves to shorter wavelength (275nm → 245nm) by introducing substituent groups.
- Observed scintillation light yield decreased in proportion to the concentration of Zr β-keto ester due to remaining absorption @ 280nm. Need low polarity solvent.
- Quantum yield of Zr(ODZ)₄ was achieved ~30%, but it was not used for scintillator due to no overlap between emission of solvent and absorption of ODZ.

BACKUP

Neutrinoless double beta decay using

liquid scintillator

 Experimental limits for neutrino mass

Requirement for <m,>:50~100meV high energy resolution 4%@2.5MeV Iow background rate 0.01 count kg⁻¹ y⁻¹ ton scale of target

Liq. Scintillator is easy to scale up target volume

What's problem : Absorption spectra of Zr(acac)₄

 Emission peak of anisole was observed around 295nm.
 Absorption peak of Zr(acac)₄ was observed around 270nm.

Scintillation light from PhOMe might be absorbed by Zr(acac)₄

Simple expectation for quenting

Assuming to same cross section for light

Light yield = $L_0 \times$ $\sigma_1 N_{ppo}$ $\sigma_1 N_{ppo} + \sigma_2 N_{Zr}$

L₀: Light yield of anisole + Zr(acac)₄ **PPO+POPOP** PPO N_{ppo} and N_{Zr}: No. of molecular for PPO and Zr(acac)₄

 σ_1, σ_2 : absorbance of PPO and Zr(acac)₄

What's problem

Absorption spectra of In(acac)₃ (indium acetyl acetone) was overlapped with the emission spectra from Anisole (Chem. Phys. Lett., 435(2007), 252)

Same overlap of the emission and the absorption spectrum would be occurred even if different metal (Zr) was used.

Scintillation light yield (¹³⁷Cs) with respect to concentration of Zr(acac)₄

concentration of Zr(acac) ₄	Observed channel	Expected channel
0 mg	2450	2450
50mg	1800	1997
100mg	1400	1687
200mg	950	1284
300mg	650	1038
500mg	300	750

Photo Luminescence and absorption of PPO

Photo luminescence
Fluorescence device: HORIBA FluoroMax-4
Absorbance device : HITACHI U-3000
Solvent : Benzonitrile (PhCN)
Concentration : 1.0 × 10⁻⁵ mol/L

2,5-Diphenyloxazole
Molecular mass : 221.26
Max. emission wavelength : 368.0nm
Max. absorption wavelength : 309.7nm

Photo Luminescence and absorption of POPOP

 Photo luminescence
 Fluorescence device: HORIBA FluoroMax-4
 Absorbance device : HITACHI U-3000
 Solvent : Benzonitrile (PhCN)
 Concentration : 1.0 × 10⁻⁵ mol/L

1,4-Bis(5-phenyloxazol-2yl)benzene
Molecular mass : 364.40
Max. emission wavelength : 423.6nm
Max. absorption wavelength : 364.1nm

日本物理学会 第68回年次大会

27

Photo Luminescence and absorption of bis-MSB

 Photo luminescence
 Fluorescence device: HORIBA FluoroMax-4
 Absorbance device : HITACHI U-3000
 Solvent : Benzonitrile (PhCN)
 Concentration : 1.0 × 10⁻⁵ mol/L

1,4-Bis(2-methylstyryl)benzene
Molecular mass : 310.44
Max. emission wavelength : 426.6nm
Max. absorption wavelength : 355.3nm

<u>Response for γ–ray for tetrakis 8-</u> <u>quinolinolate Zr complex loaded scintillator</u>

ZrQ₄ 50mg in PhCN-POPOP

Quantum Yield=1.1% obtained by optical method

Light Yield to BC505: =7.3%