インジウムを用いた太陽 ニュートリノ半導体検出器 の開発XI

日本物理学会 2009年秋季大会 2009年9月12日

宮城教育大学 福田善之、加賀谷亮太 東大宇宙線研 森山茂栄、関谷洋之 東大素粒子センター 難波俊雄 浜松ホトニクス(株) 固体事業部 井澤利之、朝倉雅之

Motivation

mixing angle θ_{12} is not well determined compared with θ_{23} obtained by Atm. v. Survival probability could increase at 5MeV or less in case of LMA solution, and the value of probability depends on θ_{12} .

 $pp/^{7}Be$ solar neutrino spectrum gives us precise θ_{12}

Capture of low energy solar neutrinos by ¹¹⁵In

Advantage

- large cross section (~640SNU)
- direct counting for solar neutrinos
- sensitive to low energy region (E, ≧ 125keV)
- energy measurement (E_e = E_v 125keV)
 triple fold coincidence to extract neutrino signal from huge BG (e₁ +γ₂ + γ₃)
- Disadvantage
- natural β-decay of ¹¹⁵In (τ_{1/2} = 4.4 × 10¹⁴ yr, Ee≧498keV)
 possible BG due to correlated coincidence by radiative Bremsstrahlung

Requirement for the detector

- 1. Good energy resolution : 10%(FWHM)
- 2. Fine segmentation (10^4-10^5)
- 3. High efficiency γ detection

Nuclear Physics A 748 (2005) 333-347

R.S.Raghavan Phs.Rev.Lett37(1976)259

¹¹⁵In + $\nu_e \rightarrow {}^{115}Sn^* + e^-$ ¹¹⁵Sn*(4.76µS) → ${}^{115}Sn + \gamma_1$ (115keV) + γ_2 (497keV)

Possible InP detector for solar neutrinos

- Multi-pixel structure for large area detector
- High Z scintillator surrounding InP detector detect γs
- 4tons of ¹¹⁵In detector for low energy solar v

Indium Project on Neutrino Observation for Solar interior (IPNOS) experiment

Semi-insulating InP cell detector

Mounted in vacuum chamber

- SI InP cell detector using VCZ-InP wafer (product of Sumitomo Electric K.K.)
- Cooled by dry-ice (T = -79 degree)
- Response for gammas from radioactive sources

Surface size: 10mm × 10mm × 0.2mm (6mm × 6mm × 0.2/0.23/0.28/0.45mm) Electrode :

- Ohmic contact
- evaporated Au base metal
- Insulator (SiN) to avoid leak current

Principle of charge collection

- μ : mobility [m²v⁻¹s⁻¹]
- v : carrier velocity [ms⁻¹]
- E : electric field $[vm^{-1}]$
- d : thickness of SI InP
- x₀ : range of electron

 $E=V_0/d v=\mu E=\mu V_0/d$

drift length : $Ld = \tau V = \mu \tau V_0/d$ τ : carrier lifetime [s] Induced charge : dQ = (q/d) dxUsing Hecht formula, $Q = Q_0 \left\{ \left(\frac{L_e}{d}\right) \left(1 - e^{-\frac{X}{L_e}}\right) + \left(\frac{L_n}{d}\right) \left(1 - e^{-\frac{(d-x)}{L_n}}\right) \right\}$ For full collection : (Le+Lh~d) $Q = Q_0$

2009年9月12日

y spectrum measured by InP detector

InP detector should be cooled (-79 degree using Dry-Ice) Clear photo-peak was observed, but two peak structure

Lower peak: induced charge generated by drift of carrier (electron and hole) Higher peak: full charge collection Energy of electron-hole pair production : 3.5eV Energy resolution : 25%@122keV for induced

charge peak (intrinsic : 3%)

Spectral shape and simulation

Assuming, L_e~200µm and L_h~30µm, two peak structure could be reproduced by induced charge and full charge collection.

Optimize detector thickness (using 57Co)

~280µm is best select for thickness

日本物理学会 2009年秋季大会

2009年9月12日

Development for multi-pixel detector

New dewar for parallel connection

Inside of new dewar for parallel connection

⁵⁷Co (Serial # 301)

Noise

Same peak and structure was observed.

Pulse-like noise

Unstable pulse-like noise sometimes happened in new dewar measurement.

¹³³Ba (Serial # 301)

Same structure, but worse resolution

2009年9月12日

⁵⁷Co (Serial # 631)

Also same structure, but more worth resolution

2009年9月12日

¹³³Ba (Serial # 631)

Same structure, but more worse resolution

2009年9月12日

Observation of y-rays for parallel connection

⁵⁷Co (Serial #301 + Serial #631)

Events rate increased and same resolution

2009年9月12日

Observation of y-rays for parallel connection

¹³³Ba (Serial #301 + Serial #631)

Events rate increased and same resolution

2009年9月12日

Conclusion

- Induced charge due to drift of carrier (electron and hole) generated by radiation.
- Charge distribution depends on thickness of detector.
- Parallel connection for multi-pixel detector was tested using NEW dewar.
- Charge distribution has same structure but worse resolution fix pulse-like noise problem
- Events rate increased as expected (or more)
- More multi-pixel detector connection will be tested.

IPNOS phase-I (10kg InP in LXe)

- Low background (&low temperature) environment inside of LXe
- A few events per year for pp solar neutrinos, but...
- Demonstrate actual performance for low energy solar v

New concept for IPNOS phase-I experiment

InP multi-pixel detector inside of Liquid Xenon.

30cm cubic chamber (like XMASS 100kg prototype) includes ~10kg InP detector

new detector to measure scintillation light from LXe

Prototype of multi-pixel InP detector

