インジウムを用いた太陽ニュートリノ 半導体検出器の開発

日本物理学会 第60回年次大会 2005年3月27日

 宮城教育大学 福田善之、佐藤哲也
 東大宇宙線研 森山茂栄、塩澤真人、小汐由介、 竹内康雄、難波俊雄*
 浜松ホトニクス(株) 固体事業部 犬塚智也、井澤利之

インジウムによる太陽ニュートリノ検出

R.S.Raghavan Phs.Rev.Lett37(1976)259

 $\begin{array}{ll} \nu_{e} + {}^{115}In & {}^{115}Sn^{*} + e^{-} \\ {}^{115}Sn^{*}(3.26 \mu s) & {}^{115}Sn + \\ \gamma_{1}(116 keV) + \gamma_{2}(497 keV) \end{array}$

Real-time measurement ■v energy measurable $(E_e = E_v - 125 \text{keV})$ **-3** fold coincidence to extract neutrino signal B-decay from ¹¹⁵In $(\tau_{1/2}=6 \times 10^{14} \text{yr})$ Correlated chance coincidence-Bremsstrahlung Correlated chance coincidence impurities

Semi-insulating InP半導体を用いた検出器

drift length : $Ld = \tau v = \mu \tau V_0/d \quad \tau$: carrier lifetime [s] e/h creatrion energy : ϵ_{eh} charge $Q_{total}[C] = (electron energy)/\epsilon_{eh} \times e$ $Ld \neq \infty \quad Q_{obs}[C] = \int_{0}^{R} (dE/dx)/\epsilon_{eh} e^{-r(x)/Ld} dx \times e$

□ ドリフト長を伸ばす(電荷収集効率を上げる) □ 移動度を上げる _____ 素子を冷やす(低温)

ペルチェ素子を用いたSI InP半導体検出器

2005年3月27日

2005年3月27日

ノイズレベルの温度依存性

¹³³Ba **線源による応答**

7

線スペクトルの温度依存性1

- -10 以下で光電
 ピークを観測可能に なった
- 低温とともに電荷量 が増大している。つ まり、電荷収集効率 (CCE)が増大して いる
- ドリフト長が延びて
 いると考えられる

シミュレーションによる L_d と ε_{eh} の評価1

2005年3月27日

線スペクトルのバイアス電圧依存性

線源によるスペクトル ⁵⁷Co

線スペクトルの温度依存性2

シミュレーションによる $L_d \ge \epsilon_{eh}$ の評価2

シミュレーションに よる χ^2_{min} は $\varepsilon_{eh} = 14 eV$, $L_{d} = 1000 \mu m$ 短ドリフト長はバイ アス電圧が160V であったためと考 えられる ¹³³Ba**の** 100V/200Vによ る予想と合致

μτ-productの温度依存性

2005年3月27日

エネルギー分解能: 30%@122keV (目標: 10%@100keV (FWHM))

 ▶ 低温化 -60 L_dx3 (CCEが40%up)
 ▶ 高バイアス化 1000Vを印可 L_dx5
 <u>-11%@122keV</u> が期待される
 cf. 3mm²検出器により-60 、500Vのバイアスにて 9%(FWHM)を得ている NIMA 458(2001) 400

太陽ニュートリノ観測用プロトタイプ検出器案

結果

- □ 冷却により 線の検出効率が飛躍的に上昇
- □ 100keV領域を観測可能
- μτが標準品の50倍以上を達成

初期の基礎開発段階はほぼ終了

- ンスレギー分解能が30%(目標値10%FWHM@100keV)
- > 電荷収集効率が60%に留まる

今後の課題および計画

- 4段型ペルチェまたは液体窒素により冷却し、分解能の改善を図る
- Pixel moduleの設計
- ¹¹⁵In 崩壊からの制動放射X線の測定

ニュートリノ振動解の特定感度

移動度の温度依存性

Extrapolated Low-Field Electron Drift Mobility for InP

Ref: J. Costa and A.Peczalski, J. Appl. Phys. 66(2), (1989) p674-679

半導体特性の評価

2005年3月27日

測定機器の構成

