InPダイオードと液体キセノンを 用いた低エネルギー太陽 ニュートリノ検出器の開発

特定領域「フレーバー物理の新展開」研究会 2011 2011年7月2日

宮城教育大学 福田善之 東大宇宙線研 森山茂栄

Motivation

Allowed region obtained by Survival probability for solar combined results and KamLAND matter oscillation below 1MeV Y.Suzuki@Neutrino2004 KamLAND 95% C.L. 1.0 99% C.L. 1-(1/2)sin²20 (a) <u>∆m²: fix</u> $\Delta m^2_{21} (eV^2)$ 99.73% C.L. Peve e best fit tan20=0.25 tan20=0.38 tan20=0.55 Solar 95% C.L. tan20=0.38 0.2 99% C.L. ∆m²=7.2x10⁻⁵eV² sin²0 99.73% C.L. 0.0 best fit 1.0 10 MeV 0.01 0.1 10^{-1} Neutrino energy $\tan^2\theta_{12}$

mixing angle θ_{12} is not well determined compared with θ_{23} obtained by Atm. v. Survival probability could increase at 5MeV or less in case of LMA solution, and the value of probability depends on θ_{12} .

 $pp/^{7}Be solar neutrino spectrum gives us precise <math>\theta_{12}$

Capture of low energy solar neutrinos by ¹¹⁵In Advantage

R.S.Raghavan Phs.Rev.Lett37(1976)259

Nuclear Physics A 748 (2005) 333-347

¹¹⁵In + $v_{e} \rightarrow {}^{115}Sn^{*} + e^{-}$ ¹¹⁵Sn*(4.76µs) → ¹¹⁵Sn + γ_1 (115keV) + γ_2 (497keV)

- large cross section (~640SNU)
- direct counting for solar neutrinos
- sensitive to low energy region $(E_v \ge 125 \text{keV})$
- energy measurement ($E_e = E_v 125 \text{keV}$) triple fold coincidence to extract neutrino signal from huge BG ($e_1 + \gamma_2 + \gamma_3$)
- Disadvantage
- natural β-decay of ¹¹⁵In
- $(\tau_{1/2} = 4.4 \times 10^{14} \text{ yr}, \text{Ee} \ge 498 \text{keV})$
- possible BG due to correlated coincidence by radiative Bremsstrahlung

Requirement for the detector

- Good energy resolution : 1. 10%(FWHM)
- Fine segmentation $(10^4 10^5)$ 2.
- High efficiency γ detection 3.

<u>半絶縁性InP半導体検出器</u>

真空容器にマウントされた検出器

- 住友電気工業製 VCZ法に よる半絶縁性 InP 半導体基 板
- 浜松ホトニクス制作
 ドライアイス冷却(-79 °C)

Surface size: 10mm × 10mm × 0.2mm

(6mm × 6mm × 0.2/0.23/0.28/0.45mm) Electrode :

- Ohmic contact
- evaporated Au/Cr base metal
- Insulator (SiN) to avoid leak current

電荷収集の原理

 $\begin{array}{l} \mu : mobility \ [m^2v^{-1}s^{-1}] \\ v : carrier velocity \ [ms^{-1}] \\ E : electric field \ [vm^{-1}] \\ d : thickness of SI \ InP \\ x_0 : range of electron \end{array}$

 $E=V_0/d v=\mu E=\mu V_0/d$

drift length : $L_d = \tau V = \mu \tau V_0/d$ τ : carrier lifetime [s] **誘導電荷** : dQ = qdx/dHecht formula, $Q = Q_0 \left\{ \left(\frac{L_e}{d} \right) \left(1 - e^{-\frac{X}{L_e}} \right) + \left(\frac{L_h}{d} \right) \left(1 - e^{-\frac{(d-x)}{L_h}} \right) \right\}$ **全電荷収集 (Le+Lh~d)** $Q = Q_0$

InP 検出器によるガンマ線スペクトル観測

光電ピークを観測している が、2ピーク構造となって いる Low Q peak: キャリアがド リフトすることによる誘導 雷荷 High Q peak: 全電荷収集 電子・ホールの平均生成 エネルギー: 3.5eV エネルギー分解能: 25%@122keV (intrinsic resolution : 3%)

 電子のドリフト長L_e~200µmとホールのドリフト長 L_h~30µmを仮定 すると、2ピーク構造がシミュレーションによる再現

フレーバー物理の新展開 研究会

IPNOS phase-I experiment for Solar v

experiment

InP multi-pixel detector inside of Liquid Xenon.

30cm cubic chamber (like XMASS 100kg prototype) includes ~10kg InP detector

液体キセノンのシンチレーション光も観測

フレーバー物理の新展開 研究会

<u>薄膜電極型InP検出器の開発</u>

 液体キセノンのシンチレーション光の減衰を 抑える必要がある
Au/Crの電極の厚みを100Å(10nm)/1000Å (100nm)の検出器を開発

薄膜電極型InP検出器による放射線測定

ガンマ線によるスペクトル測定では、従来の性能と変わらない

薄膜電極型InP検出器によるシンチレーシ

ョン光測定

 Cslシンチレータ
²⁴¹Amのα線による シンチレーション光
22000photon/MeV

<u>薄膜電極型InP検出器によるシンチレーシ</u> <u>ョン光測定(1)</u>

■ Siダイオード

22000photon/MeV×4MeV ×0.4 (立体角)×0.8(量子効率) × 1.6x10⁻¹⁹C =4.5 fC INP detector

22000photon/MeV×4MeV×0.25(立体角)×0.8(量子効率) × 0.85(ガラスの透過率)× Auの透過率× Crの透過率 × 1.6x10⁻¹⁹C

ノイズに隠れている

 $\tau = \exp(-ax)$ t:透過率 x:透過長 a:吸収係数 a = 4 π k / λ τ_{Au} =0.57 τ_{Cr} =0.36

フレーバー物理の新展開 研究会

<u>薄膜電極型InP検出器によるシンチレーシ</u> <u>ョン光測定(2)</u>

 予想電荷量:0.5fC
暗電流によるノイズを 抑えるため、バイアス 電圧を300Vから20V に低減

Cslのシンチレーション 光を観測(但し、2αの 信号)

メッシュ電極型InP検出器の設計

面積: 6mm×6mm 厚さ: 0.2mm 、0.3mm 電極(表): Cr 100Å Au 100Å 電極(裏): AnGe 1000Å Ni 100Å Au 6000Å

メッシュ電極パターン 開口率 50%

メッシュ電極型InP検出器の開発

 電極の厚み Au100Å/Cr100Å
表面電極の極性は 共通
基板の厚み 200µm/300µm

メッシュ電極型(C) InP検出器による放射線測定

ガンマ線によるスペクトル測定では、形状は従来の性能と変わらない。
観測事象数がおよそ半分程度に減少

開口部分に電場が 無いため、不感領域 になっている可能性

<u>メッシュ電極型(C) InP検出器によるシンチレー</u> ション光測定

 直接入射光により
2.5fC程度の電荷収 集が予想

60keVγ線事象と区 別がつかず、明確な 信号が観測されない (表面電極の効果は 不明)

■ 24ccの液体キセノン のシンチレーション 4台のInP検出器を 液体キセノンに浸け る(冷却とシンチレー ション光集光) ■光電子増倍管によ る同時計測

液体キセノンチェンバーの冷却試験

■ 薄膜電極型InP検出器を開発 ガンマ線による応答性は従来同様 ²⁴¹Am5.4MeVα線によるCslシンチレーション光を 観測した ✓ LXeシンチレーション光を観測するには、50Åの 電極厚が必要 浜松と共同開発中 ■メッシュ電極型InP検出器を試作 ガンマ線による応答性はあるが、開口部分が不 感領域 直接光の検出が確認できなかった ■ 液体キセノンのシンチレーション光観測実験 、液体キセノンチェンバー製作・冷却試験中

BACKUP

フレーバー物理の新展開 研究会

<u>薄膜電極型InP検出器によるシンチレーション</u> 光測定(3)

 予想電荷量:0.5fC
暗電流によるノイズ を抑えるため、バイ アス電圧を300Vか ら30Vに低減

