θ_{13} Measurements with Reactor Antineutrinos and the KASKA experiment

WIN'05 Neutrino Working Group Delphi Greece on June 8th, 2005

Y.Fukuda for the KASKA collaboration Miyagi University of Education

Understanding of Neutrino Sector

Pontecorvo-Maki-Nakagawa-Sakata mixing matrix (leptonic version of CKM matrix)

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

$$v_{e} v_{\mu} v_{\tau} : \text{flavor eigenstate} v_{1} v_{2} v_{3} : \text{mass eigenstate} v_{3} : \text{mass eige$$

Unknown (1-3) sector

Current status

$$|U_{MNS}| \sim \begin{pmatrix} 0.7 & 0.7 & < 0.2 \\ 0.5 & 0.5 & 0.7 \\ 0.5 & 0.5 & 0.7 \\ 0.5 & 0.5 & 0.7 \end{pmatrix} \quad \begin{array}{l} \sin \theta_{13} < 0.2 \\ \delta_{l}: \text{ totally unknown CPV phase} \\ \end{array}$$

Next important step is to measure θ_{13}

cf. finite value of $\sin^2 2\theta_{13}$ indicates the possibility of CPV phase δ_1 measurement in the future

Experimental limits for (1-3) sector

Measurement of θ_{13} using by reactor

Neutrinos from reactor

- Nuclear fission produce ~ $6v_e$ by β-decay
- ➢ Usual 1GW reactor emits 6 × 10²⁰ \overline{v}_e /sec
- Neutrino energy spectrum determined by spallation products data with 2.5% accuracy
- Neutrino absorption by proton

$$\overline{v}_e + p = e^+ + n (E_e = E_v - 1.8 \text{MeV})$$

 $e^+ + e^- = 2\gamma (0.511 \text{MeV})$

$$E_{signal} = E_v - 0.8 MeV > 1.0 MeV$$

How to measure the θ_{13}

 θ_{13} projects

Summary for θ_{13} project

Characteristics

		merit	demerit	sensitivity
	Double-Chooz	old tunnel (realistic),	L might short	$0.02@\sigma_{sys}$
		know how	systematic error	? ~0.6% 5yrs
	KASKA	largest reactor, small	man power?	$0.015 @\sigma_{sys}$
		detector, know how	budget?	~0.5% 3yrs
\succ	Braidwood	large and movable	security?	< 0.01
		detector (cross calib.)	expensive?	shape+cnt.
	Daya-bay	cheep construction	budget?	~0.01
		cost (tunnel etc)		
	Angra	?	Funding?	
	Young Gwang	?	?	

KASKA experiment

- Kashiwazaki Kariwa nuclear power station
 - Largest power in the world (24.3GW)
 - > 7 reactors in two cluster

KASKA collaboration list

Niigata University: N.Tamura, M.Tanimoto, H.Miyata, H.Nakano T.Kawasaki, M.Katsumata, R.Watanabe, T.Iwabuchi, M.Sasaki, M.Aoki, K.Sakai

Tohoku University: F.Suekane, Y.Sakamoto, Y.Tsuchiya

Tokyo Metropolitan University: T.Sumiyoshi, H.Minakata, O.Yasuda,

T.Matsumoto, K.Sakuma, T.Nakagawa

Tokyo Institute of Technology: M.Kuze, K.Nitta, H.Furuta, J.Maeda

Kobe University: T.Hara

KEK: N.Ishihara, H.Sugiyama

Okayama University: M.Sakuda

Miyagi University of Education: Y.Fukuda

Hiroshima Institute of Technology: Y.Nagasaka

Geometry of KASKA experiment

Location of detectors

2005 (WIN05)

How to detect anti- v_e

Detector under the ground

8th of June, 2005

KASKA Detector

Expected sensitivity for KASKA

8th of June, 2005

Why θ_{13} with reactor

Accelerator long-base line experiment : v_e appearance $(v_{\mu} \quad v_e)$

→ J-PARC –SK(T2K) has sensitivity $\sin^2 2\theta_{13} < 0.006$ with 5yrs opr. → KASKA has $\sin^2 2\theta_{13} \sim 0.02$

Conflict them?

■ No : v_{μ} v_{e} appearance experiment can not measure pure θ_{13} (\overline{v}_{e} disappearance experiment can do it)

θ_{13} measurement by reactor

Reactor experiment as clean lab.

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

 $\succ \bar{v}_e \quad \bar{v}_e$ disappearance experiment

- Measurement rate (deviated from 1/r² dependence) and spectral distortion
- Multi-detectors
- \triangleright O(1km) base-line : no matter effect

http://www.ifi.unicamp.br/~lene05/talks/Freedman_DeyaBay.ppt

 $O(10^{-3})$

θ_{13} measurement by accelerator

θ_{13} measurement by accelerator

8th of June, 2005

θ_{13} measurement by reactor and accelerator

Both experiments are complementary

Both results complete physics issue

R&D for KASKA project

- R&D budgets have been approved in JFY2004~2005
 Boring study & in-situ bgd. measurement at the K-K site
 - Boring study at near-B site
 - Prototype detector
 - Electronics development

Prototype detector with PMTs Also LS, electronics R&D, etc

- LS developments (another budget 2005-2006)
- Detector and Shaft hole design study
- Cosmic-ray detector development (2005-2006)

Possible schedule

Cost ? : JFY2005 Budget request ~\$30M

Other reactor θ_{13} experiment

Double CHOOZ

http://www.ifi.unicamp.br/~lenews05/programws05.html/talks/StatusDoubleChooz_Angra.pdf.gz

Concept of Double Chooz experiment

$\Box \overline{v}_{e}$ disappearance

Near detector

Far detector

> Tuned sensitivity by optimal base line and 10t for far detector ($\sin^2 2\theta_{13} \sim 0.018 @ 1.35 \text{km}$, 0.02 @ 1.1-1.7km assuming $\Delta m_{13}^2 = 2.8 \times 10^{-3} \text{eV}^2 + 3 \text{years}$)

Expected sensitivity

10t far detector

Improve of Chooz

□ Statistical error (σ_{stat} = 2.7% @ Chooz)

	CHOOZ	Double-Chooz
Target volume	5,55 m³	12,67 m ³
Target composition	6,77 10 ²⁸ H/m ³	6,82 10 ²⁸ H/m ³
Data taking period	Few months	3-5 years
Event note	2700	CHOOZ-far : 60 000/3 y
Lyem rate	2700	CHOOZ-near: >3 106/3 y
Statistical error	2,7%	0,4%

Systematic error ($\sigma_{sys} = 2.8\%$ @ Chooz)

two identical detector

make $\sigma_{\text{relative}} = 0.6\%$

➢ Dead time ∼50% @ near

detector ...

	Chooz	Double-Chooz
Reactor cross section	$1.9 \ \%$	
Number of protons	0.8~%	$0.2 \ \%$
Detector efficiency	$1.5 \ \%$	0.5 %
Reactor power	0.7~%	—
Energy per fission	0.6~%	—

Braidwood

Detector of Braidwood

- Fiducial volume : 5.2m radius with Gd-LS
- Buffer volume : 7m radius with mineral oil
- 1000 8"PMT with 25% coverage
- Movable detector (direct cross calibration)
- Identify and veto the few shower producing muons which produce the neutrons and spallation products

http://www.ifi.unicamp.br/~lenews05/talks/Stefanski1.ppt

Uncertainty and Sensitivity of Braidwood

Source of Uncertainty	%
Near to Far Detector Relative	
Normalization	0.6
Far Detector Statistics	0.2
Near Detector Statistics	0.04
Backgrounds	0.5

http://www.ifi.unicamp.br/~lenews05/talks/Stefanski1.ppt

Cost estimation and schedule for Braidwood

Schedule

- > 2004: R&D proposal submission.
- 2005: Full proposal submission
- > 2007: Project approval; start construction
- 2009: Start data-taking
- Cost
 - > Estimated 4 detector \$18M + \$5M = \$23M
 - Estimated civil construction \$34M + \$8.5M = \$42.5M
 - ➤ Total : \$65.5M

Daya Bay

http://www.ifi.unicamp.br/~lenews05/talks/Freedman_DeyaBay.ppt

8th of June, 2005

Sensitivity of the Daya Bay

8th of June, 2005

Schedule and status of Daya Bay

- Schedule
 - Summer 2005 completed geological survey
 - ➢ 2006 begin civil construction
 - Early 2007 complete tunnels and underground laboratories for near site
 - > 2007 construction of tunnels for mid- and far site
 - ➢ 2008 complete tunnels and experimental halls
 - > 2008/2009 begin data taking with all facilities operation
- **Status**
 - Good cooperation from the Daya Bay Nuclear power plant.
 - ➢ R&D agreement between US and China.
 - ➢ Have formed a proto-collaboration.
 - ▶ Two collaboration meetings (Dec 2004 and Jan 2005).
 - LOI / proposal in preparation

Summary

- □ Reactor medium base-line experiment could be complementary with accelerator long base-line experiment for θ_{13} physics.
- Most powerful reactor Kashiwazaki-Kariwa station (Tokyo Electronic Power Co.) agree with our project.
- Collaboration is growing up and welcome to your participation.
- Discussing actual design for 3 identical detector and location for far detector, shaft hall, construction methods...
- Getting R&D fund, need **REAL** budget!
- □ KASKA will start from JFY2008, if it's on schedule