Development of InP solid state and liquid scintillator containing metal complex of pp/7Be solar neutrinos and neutrinoless double beta decay

12th of International Conference on Topics in Astroparticle and Underground Physics

September 8th,2011

<u>Yoshiyuki FUKUDA (Miyagi University of Education)</u> <u>Shigetaka MORIYAMA (ICRR, Univ. of Tokyo)</u>

Capture of low energy solar neutrinos by ¹¹⁵In

R.S.Raghavan Phs.Rev.Lett37(1976)259

Nuclear Physics A 748 (2005) 333-347

¹¹⁵In + $\nu_e \rightarrow {}^{115}Sn^* + e^-$ ¹¹⁵Sn*(4.76µS) → ${}^{115}Sn + \gamma_1$ (115keV) + γ_2 (497keV)

Advantage

- large cross section (~640SNU)
- direct counting for solar neutrinos
- sensitive to low energy region $(E_v \ge 125 \text{keV})$
- energy measurement (E_e = E_v 125keV)
 triple fold coincidence to extract neutrino signal from huge BG (e₁ +γ₂ + γ₃)
- Disadvantage
- natural β-decay of ¹¹⁵In
- $(\tau_{1/2} = 4.4 \times 10^{14} \text{ yr}, \text{Ee} \ge 498 \text{keV})$
- possible BG due to correlated coincidence by radiative Bremsstrahlung

<u>Goal</u>

- 1. Good energy resolution : 10%(FWHM)
- 2. Fine segmentation $(10^4 10^5)$
- 3. High efficiency γ detection

Semi-insulating InP cell detector

mounted in vacuum dewar

- Semi-insulating InP VCZ substrate by Sumitomo Electric Industrials
- Assembled by Hamamatsu Photonics
- Operation at -79degree

Surface size:

- •10mm × 10mm × 0.2mm
- •6mm × 6mm × 0.2/0.23/0.28/0.45mm Electrode :
 - Ohmic contact
 - evaporated Au/Cr base metal
 - Insulator (SiN) to avoid leak current

Gamma ray spectrum observed by InP

Measured clear photopeak, but two peak structure

- Major peak: induced charge collection (L_{ed}~200µm L_{he} ~ 30µm)
- Small peak: full charge collection
- Energy of electron-hole pair production :3.5eV
- Energy resolution : 25%@122keV

<u>IPNOS phase-I experiment for pp/7Be Solar v</u> experiment

InP multi-pixel detector inside of Liquid Xenon (Lxe).

30cm cubic chamber (like XMASS 100kg prototype) includes ~10kg InP detector

InP cell detector would observe scintillation light from LXe

September 8th, 2011

TAUP2011 in Munich

Development of InP detector with thin

thickness electrode

Avoid attenuation of scintillation light in electrode
 Developed thin thickness of Au/Cr electrode (100 angstrom [10nm]) of InP cell detector
 Hard to observe CsI scintillation light need more thin electrode (50 angstrom ready!)

TAUP2011 in Munich

Development of LXe chamber for IPNOS phase-I

24cc Liquid Xenon (Lxe) in inner chamber 4 cell InP detector mounted inside of LXe PMT read out for the coincidence

Cooling test of Liquid Xenon chamber

For 0vββ experiment

 $\beta\beta$ emitters with $Q_{\beta\beta} > 2$ Mev

Transition	Q_{etaeta} (keV)	Abundance (%) ($^{232}Th = 100$)
$^{110}Pd \rightarrow ^{110}Cd$	2013	12
$^{76}Ge \rightarrow ^{76}Se$	2040	8
$^{124}Sn \rightarrow ^{124}Te$	2288	6
136 Xe $ ightarrow$ 136 Ba	2479	9
130 Te $ ightarrow$ 130 Xe	2533	34
$^{116}Cd \rightarrow ^{116}Sn$	2802	7
$^{82}Se \rightarrow ^{82}Kr$	2995	9
$^{100}Mo \rightarrow ^{100}Ru$	3034	10
$^{96}Zr \rightarrow ^{96}Mo$	3350	3
$^{150}Nd \rightarrow ^{150}Sm$	3667	6
$^{48}Ca \rightarrow ^{48}Ti$	4271	0.2

 Large Q value : above ²⁰⁸Tl γ line (2.614MeV)
 metal complex solved in organic solvent Zirconium (Zr) has 4 valence ion

September 8th, 2011

TAUP2011 in Munich

Metal complex for liquid scintillator

metal complex
 <u>8-quinolinolate</u>
 <u>metal complex</u>
 (MQ_n)

M = In, n = 3; M = Zr, n = 4

➢AlQ₃ has been established as organic Electro Luminescence material (@530nm)

InQ₃ and ZrQ₄ should also have same property of luminescence with almost same wavelength

Goal Light yield : 60% of BC505 Energy resolution : 4%@3MeV

Synthesis of ZrQ₄ and sublimation

InQ₃ primary yield 100% sublimation 77% <u>ZrQ₄</u> primary yield 96% sublimation 70%

Solution InQ₃ and ZrQ₄ in organic solvent InQ₃ and ZrQ₄ dissolved in Benzonitrile (PhCN) with ~2% ■ Benzonitrile (PhCN: C₆H₅CN) density: 1.0g/mL flash point : 75°C photon emission: 291nm@maximum attenuation length : 66cm (@0.5wt%) Liquid scintillator cocktail PhCN+PPO(100mg)+POPOP(10mg) PhCN+PPO(100mg)+bis-MSB(10mg)

Photo Luminescence and absorption of ZrQ₄ complex

 Photo luminescence
 Fluorescence device: HORIBA FluoroMax-4
 Absorbance devie : HITACHI U-3000
 Solvent : Benzonitrile (PhCN)
 Concentration : 3.0 × 10⁻⁵ mol/L

Molecular mass : 667.84

 Max. emission wavelength : 548.0nm
 Max. absorption wavelength : 383.3nm

Quantum yield of InQ₃ and ZrQ₄ for photo luminescence

Quantum yield

- Fluorescence intensity (area of wavenumber spectra) of Quinine as standard (Ir)
- Same intensity using corrected spectrum for InQ₃/ZrQ₄ was calculated (Is)
- Absorbance of Quinine (Ar:0.34) and InQ₃/ZrQ₄ (As:0.19/0.39)
- Quantum Yield is defined by $\Phi s = \Phi r(Is/Ir)(Ar/As)$

 Φ s(lnQ₃) = 0.050 [ls/lr = 0.051] Φ s(ZrQ₄) = 0.011 [ls/lr = 0.023] cf. Φ s(AlQ₃)=0.17 **DAQ** setup

Comparison of light yield of PhCN

based scintillator PhCN/PPO100mg/POPOP 10mg (PhCN-POPOP)

1040keV : 2075ch@24db <u>33200ch@0db</u> (QE : 0.25) 132800ch@0db Light Yield toBC505: 63%

478keV: 1875ch@18db expected : 1907ch

1040keV : 2255ch@24db <u>36080ch@0db</u> (QE : 0.25) **144320ch@0db** Light Yield toBC505: 69%

478keV: 2025ch@18db expected : 2072ch

September 8th, 2011

Response for γ-ray from radioactive source : Light yield and quantum yield

InQ₃ 50mg in PhCN-POPOP

1040keV : 1925ch@0db (QE : 0.093)

20699ch@0db

Quantum Yield : 20699/132800 =15.6%(5.0%)

Light Yield to BC505: 20699/208640 =9.9%

ZrQ₄ 50mg in PhCN-POPOP

1040keV : 1525ch@0db (QE : 0.10)

15250ch@0db

Quantum Yield : 15250/132800 =11.5%(1.1%)

Light Yield to BC505: 15250/208640 =7.3% Response for γ -ray from radioactive source : PhCN scintillation light for $\lambda > 530$ nm

FujiFilm SC-48 (λ > 530nm transparency : 92%)

PhCN-POPOP via SC-48

1040keV: 1525ch@6db

30500ch@0db Light yield :

30500/132800 =23.0% remains

77% of light was λ < 530nm

<u>Response for γ–ray from radioactive source</u> : residual light in luminescence

InQ₃ 50mg in PhCN-POPOP via SC-48

residual lights in InQ₃ luminescence

1040keV : 1280ch@0db (QE : 0.093)

13763ch@0db

Light yield : 13763/20699 =66.5%

:.33.5% loss

Most of the loss would be POPOP residual lights.

Most of light was caused by luminescence of complex

Conclusion

- InP detector for IPNOS needs more thin Au/Cr electrode (50 angstrom) to measure LXe scintillation.
- InQ₃ and ZrQ₄ loaded in PhCN scintillator have photo luminescence for γ irradiation.
- Transparency : ~66cm @ 558nm (0.5% dissolution)
- Light yield relative to BC505 : 9.9% and 7.3%
- Quantum yield : 15.6% / 11.5% (PL: 5.0% / 1.1%)
- Next step: modify 8-quinolinolate ligand to add substituent groups in order to both increase QY and shorten wavelength
- Possibility: (In) β-diketon complex solved 10wt.% in Anisole. Modify ligand to add same (e⁻ poor) substituent.

5-(4-6-dimethoxy-1,3,5-trianzin-2yl)-8quinollinolate metal complex

HOMO-LUMO Amax (∈ [mol⁻¹·cm⁻¹]) $\lambda_{\rm F} [\rm nm]$ Φ_F^b complex T_F [ns] gap [eV] Alg₃ $388(7.0 \times 10^3)$ 526 0.171 2.570 15.38 $390(2.7 \times 10^4)$ 490 0.533 3.255 29.50 1a (J.Org.Chem. 2004 69 1723-1725) Expected light yield Quantum Yield: $\ln Q_3 \ 0.05 \rightarrow 0.15 \sim 0.4$ $ZrQ_4 0.01 \rightarrow 0.03 \sim 0.37$ emission wavelength: ~530nm for InQ₃ QE 0.093→0.126 ~524nm for ZrQ₄ QE 0.10→0.13 4~11 times larger light yield will realize