

InP solid state detector for a measurement of low energy solar neutrinos

TAUP2009 conference Solar, Reactor and other Low-Energy Neutrino Physics July 1st, 2009 Miyagi University of Education Y.Fukuda ICRR, Univ. of Tokyo S.Moriyama, M.Shiozawa, Y.Koshio ICEPP, Univ. of Tokyo T.Namba Hamamatsu Photonics K.K. S.S.div. T.Izawa, M.Asakura

Motivation

Allowed region obtained by combined results and KamLAND

Survival probability for solar matter oscillation below 1MeV

Y.Suzuki@Neutrino2004 Δm^2 in eV^2 x10^{-⁴} 1.0 (a) <u>∆m²</u>; fix 1-(1/2)sin²20 0.8 tan20=0.25 0.6 InP(CC) tan20=0.38 XMASS(95%,CL) tan20=0.55 1 KamLAND tan20=0.38 0.2 Am²=7.2x10⁻⁵eV 0.0 0.01 0.1 1.0 Neutrino energy 0.10.20.30.40.50.60.70.80.9 $sin^{2}(\Theta)$

mixing angle θ_{12} is not well determined compared with θ_{23} obtained by Atm. v. Survival probability could increase at 5MeV or less in case of LMA solution, and the value of probability depends on θ_{12} .

 $pp/^{7}Be solar neutrino spectrum gives us precise <math>\theta_{12}$

TAUP2009 Solar, Reactor and other Low-Energy Neutrino Physics

sin²0

10 MeV

Capture of low energy solar neutrinos by ¹¹⁵In Advantage large cross section (~640SNU) direct counting for solar neutrinos R.S.Raghavan Phs.Rev.Lett37(1976)259 sensitive to low energy region τ=4.76 µS $(E_v \ge 125 \text{keV})$ 7/2* 612.8 • energy measurement ($E_e = E_v - 125 \text{keV}$) 115.4 keV triple fold coincidence to extract neutrino $(e/\gamma)_2$ $\tau = 16 \text{ ps}$ 497.4 signal from huge BG ($e_1 + \gamma_2 + \gamma_3$) 9/2+ 115In $b = 1.2 \cdot 10^{-6}$ Disadvantage $\tau = 6.4 \times 10^{14} \text{ y}$ Y3 natural β-decay of ¹¹⁵In 497.4 keV $\beta_{max} = 499$ $(\tau_{1/2} = 4.4 \times 10^{14} \text{ yr}, \text{Ee} \ge 498 \text{keV})$ 1/2+ 115Sn possible BG due to correlated Nuclear Physics A 748 (2005) 333-347 coincidence by radiative Bremsstrahlung Requirement for the detector ¹¹⁵In + $v_e \rightarrow {}^{115}Sn^* + e^-$ 1. Good energy resolution : ¹¹⁵Sn*(4.76µs) → ¹¹⁵Sn + 10%(FWHM) γ_1 (115keV) + γ_2 (497keV) 2. Fine segmentation $(10^4 - 10^5)$ 3. High efficiency γ detection

Semi-Insulating InP semi-conductor

Possible InP detector for solar neutrinos

- Multi-pixel structure for large area detector
- High Z scintillator surrounding InP detector detect γs
- 4tons of ¹¹⁵In detector for low energy solar v

Indium Project on Neutrino Observation for Solar interior (IPNOS) experiment

Semi-insulating InP cell detector

Mounted in vacuum chamber

- SI InP cell detector using VCZ-InP wafer (product of Sumitomo Electric K.K.)
- Cooled by dry-ice (T = -79 degree)
- Response for gammas from radioactive sources

Surface size: 10mm × 10mm × 0.2mm (6mm × 6mm × 0.2/0.23/0.28/0.45mm) Electrode :

- Ohmic contact
- evaporated Au base metal
- Insulator (SiN) to avoid leak current

Principle of charge collection

 $\begin{array}{l} \mu : mobility \ [m^2v^{-1}s^{-1}] \\ v : carrier velocity \ [ms^{-1}] \\ E : electric field \ [vm^{-1}] \\ d : thickness of SI \ InP \\ x_0 : range of electron \end{array}$

 $E=V_0/d v=\mu E=\mu V_0/d$

 τ : carrier lifetime [s]

drift length : $L_d = \tau v = \mu \tau V_0/d$

Induced charge : dQ = qdx/dUsing Hecht formula,

$$Q = Q_0 \left\{ \left(\frac{L_e}{d}\right) \left(1 - e^{-\frac{X}{L_e}}\right) + \left(\frac{L_h}{d}\right) \left(1 - e^{-\frac{(d-X)}{L_h}}\right) \right\}$$

For full collection (Le+Lh~d) $Q=Q_0$

TAUP2009 Solar, Reactor and other Low-Energy Neutrino Physics

July 1st, 2009

y spectrum measured by InP detector

InP detector should be cooled (-79 degree using Dry-Ice) Clear photo-peak was observed, but two peak structure

Lower peak: induced charge generated by drift of carrier (electron and hole) Higher peak: full charge collection Energy of electron-hole pair production : 3.5eV

Energy resolution : 25%@122keV for induced charge peak (intrinsic : 3%)

Spectral shape and simulation

 Assuming, L_e~200μmand L_h~30μm, two peak structure could be reproduced by induced charge and full charge collection.

Optimization for detector thickness

TAUP2009 Solar, Reactor and other Low-Energy Neutrino Physics

10

Observation of internal ¹¹⁵In β decay and correlated backgrounds

CsI(TI) scintillator : detect radiative Bremsstrahlung and other coincidence events with InP detector Csl crystal size : 50mm × 50mm × 20mm radiation shield : lead in 5cm 12 thickness and oxygen free copper in 1cm thickness • $4 - \pi$ active veto plastic counter : veto cosmic ray muon

¹¹⁵In β-decay signal in InP detector

Observed spectrum has different shape from the expected one by β decay of 115**In**. Events with E<100keV</p> seem to be noise due to the vibration Events with E>300keV seems to be another backgrounds

July 1st, 2009

U/Th contamination in SI InP wafer

According to BG measurement using low-BG Ge detector, amount of U/Th contamination are evaluated by 5X10⁻¹¹ g/g and 3X10⁻¹¹g/g, respectively.

<u>β-decay spectrum with U/Th backgrounds</u>

Assuming U/Th backgrounds, the spectral shape with E>300keV seems to be consistent with the observed spectrum. ²¹⁴Pb(E_{max}=670keV) ²¹⁴Pb(E_{max}=730keV) ²¹²Pb(E_{max}=334keV) 234 Th(E_{max}=106keV) • Another source of β decay with E>300keV?

Backgrounds inside of Shield

Measurement of large area Si detector

No peak of gammas (β spectrum of U/th?)

Measurement of CsI scintillator detector

Several peaks of gammas from U/Th decay

Observed coincidence backgrounds

Coincidence background was observed. Csl scint. detects external gammas from U/Th decay InP (Si as a reference) detects internal/external β s from U/Th decay. No significant radiative Bremsstrahlung from ¹¹⁵In β decay was observed.

need more statistics

Uncorrelated BG for solar v experiment

- InP signal (ev#1) and scintillator signals (ev#2 with E~116keV and ev#3 with E~497keV) within 10ms Gate
- Uncorrelated BG: 5 × 10⁻⁶ events/day/module
 = 10 events /day/whole detector =2.0X10⁶ modules
- U/Th in InP wafer should be reduced ~1/10

Conclusion

- InP detector observed clear peak of γs
- Induced charge due to drift of carrier (electron and hole) generated by radiation.
- Average energy of carrier production : 3.5eV
- Energy resolution : 25% Vertical Bridgeman method
 - No significant backgrounds related to radiative Bremsstralung of ¹¹⁵In need more statistics
- Amount of Internal U/Th contamination should be reduced by 1/10 in order to keep S/N~1

Next step : IPNOS phase-I (10kg InP in LXe)

- Low background (&low temperature) environment inside of LXe
- A few events per year for pp solar neutrinos, but...
- Demonstrate actual performance for low energy solar v

Prototype of multi-pixel InP detector

New concept for IPNOS phase-I experiment

InP multi-pixel detector inside of Liquid Xenon.

30cm cubic chamber (like XMASS 100kg prototype) includes ~10kg InP detector

