1. Introduction

- **Purpose**: Measurement of precise mixing angle θ_{12}
 - 96% C.L. allowed region obtained by global fit
 - LMA solution (blue): $\Delta m_{21}^2 = 7.5 \times 10^{-5} E$ (DSN spectrum)
 - KamiLAND (green) \Rightarrow confirm θ_{12} & Δm_{21}

- **on-going solar $8B$ experiment**
 - KamiLAND (Liquid scintillator, electron elastic scattering (EES))
 - InP (Liquid scintillator, EES)

- **future solar p/Be experiment**
 - XMASS (LO, E, H, KATHERINE)
 - LENS (liquid scintillator loaded in In$	ext{V}$ charged current (CCI))

- **Contribution to determination of θ_{13}**
 - Precise θ_{13} from solar neutrino experiment and KamiLAND experiment will contribute to determination of θ_{13}

- **Technique of low energy solar neutrino detection**
 - Major event due to ν_{α}
 - Small event due to ν_{β}

- **Indium Project on Neutrino Observation for Solar interior (IPNOS) experiment**
 - Hybrid structure of InP and external scintillator
 - InP multi-pixel detector inside of Liquid Xenon
 - 30cm cubic chamber (like XMASS 100kg prototype detector)

 - Number of expected events assuming LMA solution with \bar{E}_{ν}
 - Number of expected event assuming E_{ν}

 - Statistical and theoretical error in total $\Rightarrow -3.5\%$

 - $\theta_{13} = 30^\circ - 34^\circ$

2. Si InP cell detector

- **Response for γ-ray from radioactive source**

3. InP photon detector

- **InP detector inside Liquid Xenon**
 - Liquid Xenon has large cross section to detect γ-ray
 - InP detector should keep cool to reduce dark current

 - Development of InP photon detector
 - Thin electrode to pass the lights
 - InP detector should work as photon detector to detect γ-ray

4. IPNOS phase-I experiment

- **Detector**
 - 30cm cubic chamber (like XMASS 100kg prototype detector)
 - InP multi-pixel detector inside of Liquid Xenon

- **Chamber includes**
 - 10kg InP detector

- **Purpose**
 - Demonstrate low Background environment
 - Long stable operation (1 year will be expected for half year)

- **Requirements to detect $\bar{\nu}_{\beta}$**
 - Transparency of Au/Cr electrode : $0.43 \times 0.39 = 0.17$
 - Assuming same conversion efficiency : 0.3
 - Assuming surface scattering : 0.8
 - Expected scint. light yield $\Rightarrow 3keV$ not enough...
 - Modifying shape of electrode such as mesh structure
 - Assuming 50% for dark area then transparency recovers 0.58

5. Liquid scintillator containing metal complexes

- **Development of liquid scintillator using Indium complexes**
 - **goal**: solubility : 5 wt%, light yield : 60% of BC505, attenuation length : 2-3m

- **tris-(8-quinolinolinate) Indium complex (InQ3)**
 - $\nu_{\beta\beta}$ has been established as organic electro luminescence material (maximum luminescence at 530nm)
 - InQ3 should have same property of luminescence

- **Synthesis of InQ3 complex**
 - Solution of InQ3 in organic solvent

- **Luminescence of InQ3 complex**
 - $\nu_{\beta}\nu_{\beta}$ energy transfer to InQ3
 - ν_{β}-PPO dissolved as a wavelength shifter (0.15wtr)

 - Light yield and quantum yield

 - **Performance of liquid scintillator**
 - Setup
 - Hamamatsu H6410 2inch photomultiplier
 - Fisherbrand 20ml Borosilicate Glass Scintillation Vials
 - Acrylic light guide
 - LeCroy 1182 charge sensitive VME ADC
 - Coincidence method was used for eliminating BG

 - **Response for γ-ray from radioactive source**

6. Next step

- **For IPNOS phase-I**
 - Measurement of scintillation light from LXE

- **For metal complex loaded liquid scintillator**
 - In complex
 - modify 8-quinolinolate ligand to add substituent groups (Cl, NO$_2$, ...)
 - use another ligand which should be OEL
 - Photo emission : 291nm
 - Matrix K ($\nu_{\beta\beta}$)
 - $\phi_{\beta\beta}$ and $\phi_{\beta\beta}$

- **Zr, Mo, Cd, N complex**
 - Other metal Zr, Mo, Cd, N complex will be good detector for $\nu_{\beta\beta}$ experiment

 - Goal : $\phi_{\beta\beta}$, solubility and $\phi_{\beta\beta}$@3MeV

- **supported by Grant-in-Aid for Scientific Research on Priority Areas 22019110**

- **Light yield and quantum yield**

- **Photo luminescence caused by γ-ray was confirmed**

- **Light yield and quantum yield**

- **relative light yield to BC505 : 2% (36% for PHCN-PPO)**

- **Development of InP solid state detector and liquid scintillator**
 - For Metal complex loaded liquid scintillator
 - In complex
 - modify 8-quinolinolate ligand to add substituent groups (Cl, NO$_2$, ...)
 - use another ligand which should be OEL
 - Photo emission : 291nm matrix K ($\nu_{\beta\beta}$)
 - $\phi_{\beta\beta}$ and $\phi_{\beta\beta}$

- **Zr, Mo, Cd, N complex**
 - Other metal Zr, Mo, Cd, N complex will be good detector for $\nu_{\beta\beta}$ experiment
 - Goal : $\phi_{\beta\beta}$, solubility and $\phi_{\beta\beta}$@3MeV

- **supported by Grant-in-Aid for Scientific Research (C) 22540303**