Development of Liquid Scintillator containing Zirconium Complex for Neutrinoless Double Beta Decay Experiment The 14th International Workshop on Next generation Nucleon Decay and Neutrino Detectors (NNN13) Kashiwa, IPMU 11 – 13 November, 2013 Y.Fukuda^a T.Muramatsu^a S.Moriyama^b, Narengerile^a, A.Obata^a, I.Ogawa^c, A.Gunji^{*d} ^a Miyagi University of Education ^b Kamioka Observatory ICRR, University of Tokyo ^c University of Fukui ^dTokyo University of Science (special thanks)

1. Neutrinoless Double Beta Decay

- Neutrinoless double beta decay
- Lifetime and neutrino mass $[T_{1/2}^{0}(0^{+} - > 0^{+})]^{-1} = G_{0\nu}(E_{0},Z)|M_{0\nu}|^{2} < m_{\nu} > 2$
- Energy spectrum and lifetime measurement •monochromatic energy = Q-value
 - • $T_{1/2}$ ~a(Mt/ Δ EB) a: abundance M: mass t: meas.time ΔE : energy res. B: BG rate

Requirement : Low background rate, Large target mass and **High energy resolution**

4. Scintillation yield with β-keto ester

Double beta decay candidates

 $\beta\beta$ emitters with $Q_{\beta\beta} > 2$ Mev

T :::	0 (1.10)		
Transition	<i>Q_{ββ}</i> (KeV)	Abundance (%) ($^{232}Th = 100$)	
$^{110}Pd \rightarrow ^{110}Cd$	2013	12	
$^{76}Ge \rightarrow ^{76}Se$	2040	8	
$^{124}Sn \rightarrow ^{124}Te$	2288	6	
$^{136}Xe \rightarrow ^{136}Ba$	2479	9	
130 Te $ ightarrow$ 130 Xe	2533	34	
$^{116}Cd \rightarrow ^{116}Sn$	2802	7	
$^{82}Se \rightarrow ^{82}Kr$	2995	9	
$^{100}Mo \rightarrow ^{100}Ru$	3034	10	
$^{96}Zr \rightarrow ^{96}Mo$	3350	3	
$^{150}Nd \rightarrow ^{150}Sm$	3667	6	
$^{48}Ca \rightarrow ^{48}Ti$	4271	0.2	

Detector design for Zr loaded liquid scintillator

0.5

 $(T_1 + T_2)/Q_{BB}$

0.4

large abundance : ¹⁰⁰Mo,⁸²Se, ¹⁵⁰Nd,

solved in liquid scintillator formed as etal complex

irconium (⁹⁶Zr) is possible candidate

Confirmed absorption peak moves 275nm \rightarrow 245nm in Hexane, but in Acetonitrile

Observed scintillation light yield decreased (but improved). Still exist absorption peak around 270nm in Anisole ?.

- Liquid scintillator containing β -keto ester ligand
- Absorbance

Absorption peaks of β -keto ester ligands were found around at 240nm (not 270nm) even though the aromatic solvent. Scintillation light yield recovers almost double @ 5w.t.%.

D high energy resolution : 4%@2.5MeV = 100keV

Assuming 10w.t.% solubility

- Iow background rate : 0.01 count kg⁻¹ y⁻¹
- large target mass :
 - ~ ton scale

Zirconium Complex in Organic liquid Scintillator (ZICOS)

2. Zirconium complex

Zirconium (IV) acetylacetonate

♦ Quenting

 good solubility (over 10w.t.% in Anisole)

 stable and cheep (commercial product)

Molecular weight (M.W.) : 487.66 Scintillation yield with respect to concentration of $Zr(acac)_4$

Expected light

Light yield = $L_0 \times \sigma_1 N_{ppo}$ $\sigma_1 N_{ppo} + \sigma_2 N_{Zr}$

L₀ : Light yield of anisole N_{ppo}: No. of PPO molecular N_{zr} : No. of Zr(acac)₄ molecular σ_1 : absorbance of PPO σ_2 : absorbance of Zr(acac)₄

concentration of Observed Expected Zr(acac)₄ ADC channel ADC channel

5. Zirconium (diethyl malonato) complex

Tetrakis (diethyl malonato) Zr

Absorbance of ligand

 $Zr(CH_3CH_2OCOCHCOOCH_2CH_3)_4$ = Zr(deml)₄ **M.W.** : 727.84

Scientific Research (C) (No.24540295) from the Japanese Society for the Promotion of Science (JSPS).

short absorption peak (~210nm

0 mg	3850	3850
50mg	3175	3138
100mg	2800	2651
200mg (1 w.t.%)	2000	2018 (52%)
300mg	1600	1613
500mg	900	1178
1000mg (5 w.t.%)		695 (18%)

♦tetrakis (isopropyl acetoacetate) Zr ♦ tetrakis (ethyl acetoacetate) Zr

H₃C

H₃C

