Development of InP solid state detector and liquid scintillator containing indium complexes for measurement of pp/7Be solar neutrinos and Neutrinoless double beta decay

Y.Fukuda^a M.Asakura^d B.Enkhbat^a T.Izawa^d S.Moriyama^b T.Namba^c A.Obata^a H.Sekiya^b K.Watanabe^a ^a Miyagi University of Education ^b ICRR, University of Tokyo ^c ICEPP, University of Tokyo ^d Solid state division, Hamamatsu Photonics K.K.

1. Introduction • Purpose : Measurement of precise mixing angle θ_{12}

 96%C.L. allowed region obtained by global fit LMA solution (blue) : CI + Ga + SK (D/N spectrum) KamLAND (green) \rightarrow confirm Δm_{12}^2

$27^{\circ} < \theta_{12} < 37^{\circ}$

- mixing angle θ_{12} is not fixed compared with θ_{23} (obtained by Atm. v) survival probability would increase at 5MeV or less in case of LMA solution, and the shape depends on the value of θ_{12} . pp/⁷Be solar neutrino spectrum could obtain precise θ_{12}
- on-going solar 7Be experiment
 - KamLAND (Liquid scintillator, electron elastic scattering [ES]) Borexino (Liquid scintillator, ES)
- future solar pp/⁷Be experiment
 - XMASS (LXe, ES, DARK MATTER)
 - (Liquid scintillator loaded In/Ye, charged current [CC])

sin² &13

0.08

0.06

0.04

0.02

0.2

4. Liquid scintillator containing metal complexes

- **Development of liquid scintillator using metal complexes**
- goal : solubility : 5 wt%, light yield : 60% of BC505, attenuation length : 2~3m
- 8-quinolinolate metal complex ($\ln Q_3 Zr Q_4$)
 - AlQ₃ has been established as organic Electro Luminescence material (maximum luminescence @ 530nm)
 - $\ln Q_3$ (for solar v) and ZrQ_4 (for $\beta\beta$ -decay) should have same luminescence
- Synthesis efficiency
- Solution of organic solvent

Solvent : **Benzonitrile** (PhCN: C₆H₅CN) density : 1.0g/mL flash point : 75°C Photon emission: 291nm@maximum Solubility of InQ₃ complex: **2wt%**

M = In, n = 3; M = Zr, n = 4

3.54 1e+00 3.293e+005 3.045e+005 2.797e+005 2.30 1e+005 2.30 1e+005 1.805e+005 1.805e+005 1.557e+005 1.309e+004 5.649e+004 5.649e+004 6.89 1e+003

ZrQ₄ absorption

• Contribution to determination of θ_{13}

• Precise θ_{12} from solar neutrino experiment and KamLAND experiment will contribute to determination of θ_{13} (Phys.Rev.Lett. 110(2008)141801)

$\sin^2 \vartheta_{12}$ Technique of low energy solar neutrino detection

R.S.Raghavan Phs.Rev.Lett.37(1976)259

¹¹⁵In + $\nu_e \rightarrow {}^{115}Sn^* + e_1^-$

Advantage

- large cross section (~640SNU)
- direct counting for solar neutrinos
- sensitive to low energy region ($E_v \ge 125 \text{keV}$)
- energy measurement ($E_e = E_v 125 \text{keV}$)
- triple fold coincidence to extract neutrino signal from huge BG ($e_1 + \gamma_2 + \gamma_3$)

Solar, KamLAND

0.3

0.4 0.2

Solar & KamLAND

S+K

0.3

 $\sin^2 \vartheta_{12}$

Disadvantage

- natural β -decay of ¹¹⁵In
- $(\tau_{1/2} = 4.4 \times 10^{14} \text{ yr}, \text{Ee} \ge 498 \text{keV})$
- possible BG due to correlated accidental coincidence by radiative Bremsstrahlung

Indium Project on Neutrino Observation for Solar interior (IPNOS) experiment

¹¹⁵Sn*(4.76 μ s) \rightarrow ¹¹⁵Sn + γ_2 (115keV) + γ_3 (497keV)

Hybrid structure of InP and external scintillator

- InP multi-pixel detector (10mmX10mmX0.2mm cell) •external scintillator to detect γ_1 and γ_2
- •4tons of ¹¹⁵In detector for solar v experiment
- InP : 5.1tons (2.0X10⁶ modules with $\Delta E/E \sim 10\%$)
- high Z material for external scintillator
- total size ~5m X ~5m X ~5m (depends on structure)

 $\theta_{12} = 30^{\circ} - 34^{\circ}$

- Number of expected events assuming no ν oscillation \rightarrow 1885
- Number of expected event assuming LMA solution with $Ee \ge 100 \text{keV} \rightarrow 720$

sublimation 70%

_uminescence of 8-quinolinolate metal complex

Statistical and theoretical error in total $\rightarrow \sim 3.5 \%$

2. SI InP cell detector

InP detector in vacuum dewar

\blacklozenge Response for γ -ray from radioactive source

Schematic view of InP detector 11mm squere Size: 10mm × 10mm × 0.2mm Electrode : Ohmic contact Au vacuum evaporation Insulator (SiN) to avoid leak current Cr-Au(0.03-1.0µm) SiN(0.18µm) nP(200um) u-Ge/Ni/Au (0. 13/0. 16/0. 5µm) Setup Clearpulse 5102 preamplifier Clearpulse 4417 shaping amplifier CAEN V419 peak sensing VME ADC Measured clear photo- peak, but two peak structure Lower peak: induced charge $(L_{ed} \sim 200 \mu m L_{he} \sim 30 \mu m)$ Higher peak: e⁻ full collection Energy of electron-hole pair production :3.5eV • Energy resolution : 25%@122keV

600 700 [nm] 400 500

Performance of liquid scintillator

Setup

- Hamamatsu H6410 2inch photomultiplier
- Fisherbrand 20mL Borosilicate Glass Scintilation Vials
- Acrylic light guide
- LeCroy 1182 charge sensitive VME ADC
- coincidence method was used for eliminating BG
- Solution : PhCN with PPO 100mg and POPOP 10mg

• Response for γ -ray from radioactive source

Photo luminescence caused by γ -ray was confirmed

3. IPNOS phase-l experiment

Detector

- 30cm cubic chamber (like XMASS 100kg prototype detector)
- InP multi-pixel detector inside of Liquid Xenon
- Chamber includes ~10kg InP detector

Purpose

- demonstrate LowBG environment
- long stable operation (1 ppv event will be expected for half year)
- Requirements to detect γ_3 (498keV)
 - assuming surface coverage : 0.8
 - modify shape of electrode such as mesh structure
 - assuming 50% for naked area

Expected number of photon for γ_3 **is 8400**, which corresponds to 30keV electron equivalent

5. Next step

For IPNOS phase-I

Measurement of scintillation light from LXe

- direct measurement of LXe scintillation light construct small LXe chamber (volume : 0.15L)
- use R8778 PMT for coincidence method
- finalize shape of electrode for InP detector

supported by Grant-in-Aid for Scientific **Research on Priority Areas 22011001**

- For liquid scintillator containing metal complex
- modify 8-quinolinolate ligand to add substituent

- beta diketon complex
- good solubility (over 10wt.%) has been reported
- For $\beta\beta$ decay experiment, **4%@3MeV** of energy resolution should be required.

supported by Grant-in-Aid for Scientific Research (C) 22540303