Y.Fukuda at LowNu2003

Solid state detector using indium for pp/7Be solar neutrino measurement

Supported by Grant-in Aid for Scientific Research (B) KAKENHI 13440066

> Y.Fukuda Miyagi University of Education

Y.Koshio, S.Moriyama, M.Shiozawa and Y.Takeuchi ICRR, University of Tokyo

T.Inutsuka and T.Izawa

Solid state division, Hamamatsu Photonics K.K

Status of Solar Neutrino Oscillation

Projects to detect low energy solar neutrinos

- \Box v_e elastic scattering experiment
 - XMASS (Liquid Xe scintillator)
 - CLEAN (Liquid Neon scintillator)
 - HERON (Liquid Hellium at 50mK + scintillation)
 - > TPC (Hellium + CH_4 gas chamber)
 - \succ Genius (Ge detector in LN₂)
 - ▶
- \Box v_e charged current experiment
 - LENS (In/Ye loaded liquid scintillator)
 - SIREN (¹⁶⁰Gd loaded liquid scintillator)
 - ➢ MOON (¹⁰⁰Mo)

.

Neutrino capture using indium and their advantages

R.S.Raghavan Phs.Rev.Lett37(1976)259

Real-time measurement ■v energy measurable $(E_e = E_v - 114.2 \text{keV})$ **3** fold coincidence to extract neutrino signal **B**-decay from ¹¹⁵In $(\tau_{1/2}=6 \times 10^{14} \text{yr})$ Correlated chance coincidence-Bremsstrahlung Correlated chance coincidence impurities

History of InP SSD development

Y.Suzuki et el., Indium Phosphide solid state detector NIMA 275(1988)142

CCE is 60% for α particle and 76% for 60keV γ -ray

Detector size is small (limited by an epitaxial growth)

Current status of InP SSD development

H.EI-Abbassi et al., NIMA 466(2001)46 VGF semi-insulating Fe-doped InP bulk detector

CCE~72% for 5.46MeV alpha particle

F.Dubecky et al., NIMA487(2002)27

VGF SI InP with Schottky electrodes volume 0.25mm³ CCE~82% with 14% (FWHM) of resolution for 60keV gamma

A.Owens et al., NIMA 487(2002)435

SI Fe-doped InP detector for X-ray measurement size 3mmx3mmx180mm P⁺ contact 2.5keV (FWHM) for 5.9keV and 12keV for 88keV of resolution at -60 degree

Semi-Insulating (SI) InP detector

InP crystal made by Vertical Gradient Freeze (VGF)

Comparison of VGF, I	LEC and HB growth		
intende	VGF	IEC	HB
SI Wafers	Yes	Yes	No
SC Wafers	Yes	No	Yes
EPD (Crystal Defects)	V.Low	High	Low
Stress	Low	High	Medium
Uniformity	Good	Fair	Poor
Diameter Scale Up	Good	Good	Poer

H.EI-Abbassi et al., NIMA 466(2001)47

specifications as given by AXT

resistivity	1.1 – 2.2 х 10 ⁷ шст
mobility	2600-2700 cm²/Vs
thickness	350 ±25 µm
Fe concentration	

Background measurement of SI InP substrait

Basic idea of InP solid state detector for solar neutrino

measurements

Monte Carlo signal simulation

InP SI proto-type detector (phase-I)

Property of proto-type detector

In Pデバイス V-1特性 25

Dark current can be reduced by lowering the temperature. $I[A]=T^{2/3}exp(-E_g/2k_BT)$

0.018µA for 36mm² InP @100V and -40degree

(presented by Hamamatsu Photonics)

Response for alpha particle

Charge Collection Efficiency

Comparison with UK group

Maximum CCE is obtained by 60% for 9mm² InP (but 13% for 36mm² InP)

Explanation of CCE for SI InP

 $E=V_0/d$ $v=\mu E=\mu V_0/d$

average length $L=\tau v=\mu\tau V_0/d$ τ : carrier lifetime [s]

 $\mu\tau$ is measured by H.El-Abassi et al. NIMA466(2001)47 $\mu\tau = 5 - 8 \times 10^{-7}$ [cm²V⁻¹] (@-21 to 19 degree)

Thus L=5x10⁻⁷[cm²V⁻¹] x 1000[V]/500[μ m] =0.01 [cm] >> x₀ (~16 μ m in InP 4MeV α)

Howeve, it means not enough for the entire volume to collect all charge

How to get higher CCE

For full depletion of detector volume,

- Increase bias voltage
- > Lower temperature ($\mu\tau$ becomes large, and also BG should be reduced)

Extrapolated Low-Field Electron Drift Mobility for InP

Ref: J. Costa and A.Peczalski, J. Appl. Phys. 66(2), (1989) p674-679

Results and Future

- Active area 9mm² and 36mm² with 500µm thickness proto-type InP detector were tested
- Alpha particle signal was clearly seen
- CCE is obtained by 60% for 9mm² and 13% for 36mm²
- New proto-type detectors (phase-II) will come soon
 - □ 36mm² SI InP with a peltier cooler
 - 36mm² SI InP applied by schottky barrier cf 38.5mm²X140μm detector NIMA458(2001)400
- If CCE achieve over 80%, then large active area with 900mm² detector (phase-III) will be tested within this year

Proto-type InP detector (phase-II) with Peltier cooler

