ジルコニウム96を用いたニュートリノを 放出しない二重ベータ崩壊事象の探索VIV/

Supported by Grant-in-Aid for Scientific Research on Innovative Areas 26105502

日本物理学会 第71回年次大会 2016年3月22日

宮城教育大学教育学部 福田 善之、那位格日楽、小畑 旭* 東京大学宇宙線研究所 森山 茂栄 福井大学工学部 小川 泉 東京理科大学理工学部 都司天博、塚田 学、速水良平

Neutrinoless double beta decay

$etaeta$ emitters with Q_{etaeta} >2 Mev								
Transition	Q_{etaeta} (keV)	Abundance (%) $(^{232}Th = 100)$						
$^{110}Pd \rightarrow ^{110}Cd$	2013	12						
$^{76}Ge \rightarrow ^{76}Se$	2040	8						
$^{124}Sn \rightarrow ^{124}Te$	2288	6						
$^{136}Xe ightarrow ^{136}Ba$	2479	9						
130 Te $ ightarrow$ 130 Xe	2533	34						
$^{116}Cd \rightarrow ^{116}Sn$	2802	7						
$^{82}Se \rightarrow ^{82}Kr$	2995	9						
$^{100}Mo \rightarrow ^{100}Ru$	3034	10						
$^{96}Zr \rightarrow ^{96}Mo$	3350	3						
$^{150}Nd \rightarrow ^{150}Sm$	3667	6						
$^{48}Ca \rightarrow ^{48}Ti$	4271	0.2						

 $[T_{1/2}^{0\nu}(0^+ ->0^+)]^{-1} = G_{0\nu}(E_0,Z) | M_{0\nu} | ^2 < m_{\nu} >^2 /m_e^2$

a: abundance M: target mass

t: measuring time ΔE : energy resolution B: BG rate

Requirement : Low BG, Large target mass, High energy resolution

日本物理学会 第71回年次大会

 $T_{1/2} \sim a(Mt/\Delta E \cdot B)^{1/2}$

ZICOS - Zirconium Complex in Liquid Scintillator experiment for neutrinoless double beta decay

Liquid scintillator :

- (1) 10 wt.% Zr(iprac)₄ and 5wt.% **PPO solved in PhOMe**
- (2) 3.5% at 3.35MeV of energy resolution, if 40% photo coverage of Photomultiplier

Pure water surrounding inner detector to veto and shield from external backgrounds.

Inner detector with 40% photo coverage 10" PMT including Zirconium loaded 14.1 tons LS

Neutrino mass sensitivity of ZICOS experiment

1) Zr enrichment

58.5% enrichment of 96 Zr (e.g. 57.3% for NEMO-3) then 96 Zr will be 126kg (0.56 times 136 Xe 320kg)

 $T_{1/2}^{0v} > 1.9 \times 10^{25} y$; $< m_v > < 0.16 - 0.3 eV (QRPA)$

2) Lowering BG rate i.e. < 1/30 × KL-Zen

$$T_{1/2}^{0\nu} > 1.0 \times 10^{26}$$
y;
< m_{ν} > < 0.04 - 0.09eV

ZICOS proto-type detector

Performance :

- Energy resolution
- BG reduction study using Cherenkov light

Physics goal :

- ⁹⁶Zr : 10g (same as NEMO-3) using natural abundance Zirconium.
- $T_{1/2}(0\nu\beta\beta) > 1.0 \times 10^{27}$ years, if no BG was found in 200 days' measurement.

Property of Cherenkov light

- Refractive index of anisole : n=1.518
- Cherenkov angle is determined by cosθ= 1/nβ
- Assuming 1.65MeV electron, then β=0.951 and Cherenkov angel θ=46.2 degree are expected.
- Cherenkov light should be measured. (400nm – 600nm : 100 photon/MeV)

$$\frac{dN}{dx} = 2\pi z^2 \alpha \sin^2 \theta_{\rm c} \int_{\lambda_1}^{\lambda_2} \frac{d\lambda}{\lambda} = 475 z^2 \sin^2 \theta_{\rm c} {\rm photon/cm}$$

c.f. Light yield of Scintillation : ~12000photon/Me

Cherenkov light = $1 \sim 2\%$ of scintillation light

 $\frac{c}{n}t$

βct

Measurement of Cherenkov light (1)

Comparison of light yields between SC-37 filter off and on for anisole only LS using back scattering method.

Light yield of Cherenkov lights (1)

Measurement of Cherenkov light (2)

Comparison of light yield between the case of Cherenkov light on and off

日本物理学会 第71回年次大会

2016年3月22日

Light yield of Cherenkov lights (2)

Cherenkov light yield Scintillation light yield of std. LS $= \frac{347/0.18}{298/0.046/0.098} = \sim 0.03$ Consistent with previous measurement.

Cherenkov lights should have directionality. (not so bad!)

2016年3月22日

How to extract Cherenkov signal

Separation of scintillation and Cherenkov lights using timing shape C.Shaomin et al. arXiv:1511.09339

Cherenkov has a faster peak than scintillation.

Waveform measurement setup

CAEN V1721 8 channel 8bit 500MS/s FADC
 CAEN V2718 VME-PCI Optical Link Bridge

Stability of material state

Zr(iprac)₄ 2242mg, PPO 999mg and POPOP 10mg solved in 20mL Anisole.

Feb. 27,2015

Mar. 14, 2016

Keep clear and transparent liquid and found no precipitate.

Stability of performance

Light Yield : -10.9%

Energy resolution : -2.9%

Slightly worse, but not by same condition (no purge temperature...)

<u>SUMMARY</u>

- Cherenkov lights from 1MeV electron have directionality and the light yield has been confirmed to be a few % of scintillation.
- Separation of Cherenkov lights from 1MeV electron will be tested by FADC time profile.
- ZICOS proto-type detector with 30cm diameter is actually planning and it will demonstrate an ability of background reduction using Cherenkov light, and try to get a limit of half-life for 0vββ up to 10²²/ years.
- Zr(iprac)₄ loaded liquid scintillator is almost stable for the material state and the performance.

BACKUP

日本物理学会 第71回年次大会

2016年3月22日

16

Light yield of scintillation in anisole

Relative scintillation light yield of anisole is 9.8% to standard cocktail (due to difference of quantum efficiency of PMT)

日本物理学会 2015年秋季大会

2015年9月27日

UV sharp cut filter (Fuji films)

Physical constants of Liquid Scintillator

Physical Constants of SGC Liquid Scintillators

Scintillator	Light Output % Anthracene¹	Wavelength of Maximum Emission, nm	Decay Constant, ns	H:C Ratio	Loading Element	Density	Flash Point °C	
BC-501A	78	425	3.2 ¹	1.212		0.87	26	
BC-505	80	425	2.5	1.331		0.877	48	
BC-509	20	425	3.1	.0035	F	1.61	10	
BC-517L	39	425	2	2.01		0.86	102	
BC-517H	52	425	2	1.89		0.86	81	
BC-517P	28	425	2.2	2.05		0.85	115	
BC-517S	66	425	2	1.70		0.87	53	
BC-519	60	425	4	1.73		0.87	63	
BC-521	60	425	4	1.31	Gd (to 1%)	0.89	44	
BC-523	65	425	3.7	1.74	Nat. 10B (5%)	0.916	-8	
BC-523A	65	425	3.7	1.67	Enr. ¹⁰ B (5%)	0.916	-8	
BC-525	55	425	3.8	1.56	Gd (to 1%)	0.88	91	
BC-531	59	425	3.5	1.63		0.87	93	
BC-533	51	425	3	1.96		0.80	65	
BC-537	61	425	2.8	0.99 (D:C)	²Н	0.954	-11	
* Anthracene light output = 40-50% of NaI(TI) ¹ Fast component; mean decay times of first 3 components = 3.16, 32.3 and 270 ns								

LY of NaI(TI) : 4 × 10⁴ photon/MeV

LY of BC505 : 1.2 × 10⁴ photon/MeV

Natural radiative U/Th decay chain

Strategy of background reduction

- > No Cherenkov ring
 - α -particle and low energy e/ γ
- One Cherenkov ring
 - Single radioactive BG and ²⁰⁸TI decay as described later.
- Multi Cherenkov ring from ²⁰⁸TI
 - β (E>0.9MeV) and 2.6MeV γ emit CL.
 - 1.09MeV γ also emits CL. (3 ring)
 - 0.51 MeV, 0.58MeV and 0.86 MeV γ don't emit CL. (2 ring)
- Ultimate contamination
 - β (E>0.9MeV) and 2.6MeV γ with low energy γ s.

Need consistency of total energy and vertex position reconstructed by SL and CL.