ジルコニウム96を用いたニュートリノを 放出しない二重ベータ崩壊事象の探索VII/

Supported by Grant-in-Aid for Scientific Research on Innovative Areas 26105502

日本物理学会 2015年秋季大会 2015年9月27日

宮城教育大学教育学部 福田 善之、那位格日楽、小畑 旭* 東京大学宇宙線研究所 森山 茂栄 福井大学工学部 小川 泉 東京理科大学理工学部 都司天博、塚田 学、速水良平

Neutrinoless double beta decay

$etaeta$ emitters with Q_{etaeta} >2 Mev		
Transition	Q_{etaeta} (keV)	Abundance (%) $(^{232}Th = 100)$
$^{110}Pd \rightarrow ^{110}Cd$	2013	12
$^{76}Ge \rightarrow ^{76}Se$	2040	8
$^{124}Sn \rightarrow ^{124}Te$	2288	6
$^{136}Xe \rightarrow ^{136}Ba$	2479	9
130 Te $ ightarrow$ 130 Xe	2533	34
$^{116}Cd \rightarrow ^{116}Sn$	2802	7
$^{82}Se \rightarrow ^{82}Kr$	2995	9
$^{100}Mo \rightarrow ^{100}Ru$	3034	10
$^{96}Zr \rightarrow ^{96}Mo$	3350	3
$^{150}Nd \rightarrow ^{150}Sm$	3667	6
$^{48}Ca \rightarrow ^{48}Ti$	4271	0.2

 $[T_{1/2}^{0\nu}(0^+ -> 0^+)]^{-1} = G_{0\nu}(E_0,Z) |M_{0\nu}|^2 < m_{\nu}^2 / m_e^2$

 $[T_{1/2}]^2 \sim a(Mt/\Delta E \cdot B)$

a: abundance M: target mass

t: measuring time ΔE : energy resolution B: BG rate

Requirement : Low BG, Large target mass, High energy resolution

Zirconium Complex in Organic Liquid Scintillator for neutrinoless double beta decay (ZICOS) experiment

Goals for development of LS : (1) high solubility

(2) 3.5% at 3.35MeV of energy resolution, if **ZICOS** have **PMTs** with 40% photo coverage and long attenuation length (~10m)

Pure water surrounding inner detector to veto external backgrounds.

Inner detector with 40% photo coverage 10" PMT including Zirconium loaded 14.1 tons LS

5.0m 5.4m 2015年9月27日 3

Backgrounds around 3.35MeV

 $0\nu\beta\beta$ signal region for ^{96}Zr

²⁰⁸Tl β + γ 's

γ 2.6MeV + (1) β_{max} 1.89 MeV + γ 0.58 MeV (8.45×10^{-01}) (2) β_{max} 1.29 MeV +γ 1.09 MeV (3.97×10^{-03}) 3 β_{max} 1.53 Μφ +γ 0.86 MeV (1.24×10-9

<u>Neutrino mass sensitivity of ZICOS experiment</u> Results from NEMO-3 (^{96}Zr) : T_{1/2}^{0v} > 9.2 × 10²¹y

 $< m_v > 7.2 - 10.8 \text{ eV} (g_A = 1.25, g_{pp} = 1.11, QRPA)$

(Ref: M.B.Kauer Doctor thesis for UCL(2010))

Assuming same energy resolution, BG rate and measurement time as KamLAND-Zen $(T_{1/2}^{0v} > 2.6 \times 10^{25} y)$ (Ref: I.Shimizu arXiv:1409.0077 (2014))

Mass : 14.1ton 10wt.% $Zr(iprac)_4 = 1.57ton$ includes 216kg of Zirconium = 6.5kg of ${}^{96}Zr$ (= 9.2kg of ${}^{136}Xe = 0.03 \times KL/Zen$)

 $T_{1/2}^{0v} > 4.4 \times 10^{24} y \leftarrow Not enough for <math>0v\beta\beta$ search

Neutrino mass sensitivity of ZICOS experiment

1) Zr enrichment

58.5% enrichment of 96 Zr (e.g. 57.3% for NEMO-3) then 96 Zr will be 126kg (0.56 times 136 Xe 320kg)

$T_{1/2}^{0v} > 1.9 \times 10^{25}$ y; $< m_v > < 0.16 - 0.3 \text{ eV} (g_A = 1.25, g_{pp} = 1.11, QRPA)$

2) Lowering BG rate i.e. < 1/30 × KL-Zen

$$T_{1/2}^{0v} > 1.0 \times 10^{26}$$
y;
< m_v > < 0.04 - 0.09eV

Measurement of backgrounds of LS

Using subtracted # of events around 2.6MeV and 2.2MeV $^{214}Bi < 4.9x10^{-20}g/g$ $^{208}Tl < 2.7x10^{-22} g/g$ ($^{238}U < 6.4x10^{-6} g/g$) ($^{232}Th < 7.4x10^{-7} g/g$) (c.f. KL 10⁻¹⁶g/g)

Background reduction

Residual backgrounds as shown in KamLAND-Zen are $^{208}\text{TI}\ \beta$ decay + γ 2.6MeV+ γ 0.58 MeV/ γ 1.09 MeV/ γ 0.86 MeV

Need additional technique except energy spectral shape obtained by scintillation light in order to reduce those backgrounds efficiently.

Can we use Cherenkov light for background reduction ?

Property of Cherenkov light

- Refractive index of anisole : n=1.518
- Cherenkov angle is determined by cosθ= 1/nβ
- Assuming 1.65MeV electron, then β=0.951 and Cherenkov angel θ=46.2 degree are expected.
- Cherenkov light should be measured. (350nm – 550nm : 150-200 photon/MeV)

$$\frac{dN}{dx} = 2\pi z^2 \alpha \sin^2 \theta_{\rm c} \int_{\lambda_1}^{\lambda_2} \frac{d\lambda}{\lambda} = 475 z^2 \sin^2 \theta_{\rm c} {\rm photon/cm}$$

c.f. Light yield of Scintillation : ~12000photon/Me

Cherenkov light = $1 \sim 2\%$ of scintillation light

 $\frac{c}{n}t$

θ

βct

TIT

Light yield of scintillation in anisole

Relative scintillation light yield of anisole is 9.8% to standard cocktail (due to difference of quantum efficiency of PMT)

日本物理学会 2015年秋季大会

2015年9月27日

Measurement of Cherenkov light

Comparison of light yields between SC-37 filter off and on for anisole LS using back scattering method. _{日本物理学会 2015年秋季大会}

Geometric light collection efficiency

Light yield of Cherenkov lights

ZICOS proto-type detector

Performance test :

- Energy resolution
- BG reduction study using Cherenkov light

Physics goal :

- ⁹⁶Zr : 12g (NEMO-3 : 10g) using natural abundance Zirconium
- Measure $2\nu\beta\beta$ half-life.
- Obtain limits beyond the NEMO-3 results.

Photon yield ratio between Cherenkov and scintillation lights in one PMT

Photon yield ratio between Cherenkov light and scintillation light is ~0.2.

It might be useful to identify PMTs which receive Cherenkov light, but can not extract those PMTs among the scintillation light by using only this information.

How to extract Cherenkov hits

Emission time

Cherenkov light : ~3ps
Scintillation light : ~20ns

Using difference of timing shape, we can extract PMTs received Cherenkov light.

Cherenkov rings calculated by toyMC

SUMMARY

► ZICOS sensitivity : $T_{1/2}^{0v} > 1.0 \times 10^{26}$ y and $< m_v > < 0.1 \text{ eV} (g_A = 1.25, g_{pp} = 1.11, QRPA)$ if we can use 58.5% enriched % It and reduce BG at 1/30 × KamLAND-Zen.

Cherenkov light was observed and the light yield is almost 1~2 % of scintillation light.

ZICOS proto-type is now planning and it will demonstrate not only good energy resolution but also establish the background reduction method using Cherenkov light.